Смекни!
smekni.com

Технологические основы машиностроения Типы производства (стр. 7 из 20)

Вместе с тем обнаружено, что для разных заготовок может быть использована одна и та же схема базирования основной

базы, если в качестве нее приняты одинаковые по форме поверхности. Таким образом, способ базирования основной базы определяется в основном ее формой. Например, если у заготовок различной конфигурации в качестве основной базы принята нижняя обработанная поверхность, то при проектировании приспособлений для всех заготовок может быть предусмотрен один и тот же способ базирования — на две опорные пластины.

В связи с этим представляется возможным рассматривать типовые способы базирования основной базы определенной формы безотносительно к форме и размерам заготовок, тем более что круг поверхностей, используемых в качестве основной базы, ограничен тремя видами — плоской поверхностью, цилиндрическим отверстием и цилиндрической наружной поверхностью.

Основную базу выбирает конструктор приспособления. Иногда это делает технолог при разработке технологического процесса, проставляя на операционном эскизе значками тип опорного элемента и число опорных точек. За основную базу предпочтительно брать поверхность, которая обеспечивает заготовке устойчивое положение в приспособлении даже при базировании только одной этой базы. Наиболее полно такому требованию отвечает плоская поверхность заготовки, располагающаяся снизу и обладающая достаточной протяженностью. Если у заготовки такой поверхности нет, выбирают другую поверхность достаточной протяженности — боковую плоскую поверхность, цилиндрическое отверстие либо цилиндрическую наружную поверхность.

На выбор основной базы влияет также точность исходных размеров и допускаемых отклонений расположения обрабатываемой поверхности. За основную следует принимать базу, от которой заданы наиболее точные исходные размеры. На первой операции, когда у заготовки еще нет ни одной обработанной поверхности, за основную базу приходится принимать необработанную поверхность, на последующих операциях — обработанную с наименьшей шероховатостью.

Примеры, иллюстрирующие выбор основной базы, приведены на рис. 3.11, где ОБ — основная база, А и В — вспомогательные базы, а обработанная поверхность изображена утолщенной линией.

Из двух баз, представленных на рис. 3.11, а, за основную принята нижняя поверхность. Из трех баз (см. рис. 3.11, б) за основную принята нижняя поверхность, имеющая два участка, один из которых устанавливается на два опорных штыря, а другой — на сблокированную опору. На рис. 3.11, в за основную базу принята обработанная наружная цилиндрическая поверхность, которой заготовка устанавливается на призму, а на рис. 3.11, г — точно обработанное цилиндрическое отверстие, которым заготовка надевается на цилиндрическую оправку, закрепленную на корпусе приспособления.

4 КАЧЕСТВО ПОВЕРХНОСТИ ДЕТАЛЕЙ МАШИН И ЗАГОТОВОК

4.1 Влияние технологических факторов на величину шероховатости

На шероховатость поверхности заготовок и деталей оказывают влияние многие технологические факторы. При обработке резанием величина, форма и направление неровностей зависят от методов, режимов и схемы обработки. Каждому методу соответствует определенный диапазон шероховатостей. Из параметров режимов резания наиболее существенное влияние на величину шероховатости оказывают скорость главного движения резания и подача.

Влияние скорости главного движения резания на шероховатость зависит от наростообразования на режущей кромке инструмента, а также от захвата и отрыва слоев, расположенных под режущей кромкой (для стали), и хрупкого выламывания частиц материала (для серого го чугуна и твердых цветных сплавов). Зависимость величины шероховатости от скорости главного движения резания представлена на рис. 4.1, а.

График показывает, что при скоростях порядка 15...30 м/мин имеет место увеличение шероховатости. Причиной является наростообразование на резце.

Рисунок 4.1. Влияние технологических факторов на величину микроне- ровностей: а —скорости резания; б— подачи; в —радиуса закругления резца При скорости главного движения резания более 30 м/мин из-за возрастания температуры в зоне резания наростообразование прекращается и величина шероховатости уменьшается. При обработке резанием материалов не склонных к образованию нароста величина шероховатости не зависит от изменения скорости главного движения резания.

При шлифовании шероховатость снижается с увеличением скорости главного движения резания и уменьшением его подачи во всех трех направлениях.

Влияние подачи на шероховатость при точении можно приближенно определить из сопоставления двух смежных положений резца, смещенных на величину подачи S (рис. 4.1, б, в) по формуле

Rz= S8r2

При точении и строгании резцами с широкой режущей кромкой, при сверлении, зенкеровании, развертывании величина подачи оказывает мало заметное влияние на шероховатость.

Глубина резания при достаточной жесткости не оказывает существенного влияния на шероховатость. При снятии корки у отливок и наклепанного слоя у стальных заготовок должна быть назначена глубина резания, обеспечивающая полное снятие такого слоя.

Геометрическая форма режущего инструмента оказывает влияние на шероховатость. Передний угол γ, угол наклона режущей кромки λ, задний угол α мало влияют на величину шероховатости. Большее значение оказывают радиус закругления при вершине, углы в плане — главный φ и вспомогательный φ1. При увеличении радиуса закругления величина шероховатости уменьшается (рис. 4.1, в). С увеличением угла φ и φ1 величина шероховатости увеличивается.

Свойства и структура обрабатываемого материала оказывают влияние на шероховатость поверхности. Более вязкие и пластичные материалы (например, низкоуглеродистая сталь), склонные к пластическим деформациям, дают при их обработке резанием большую шероховатость.

При увеличении хрупкости материала величина шероховатости уменьшается. При резании хрупких материалов зависимость Rz =f(ν) не имеет «горба» и выражается горизонтальной линией. Стали с повышенным содержанием серы (автоматные) и стали с присадкой свинца после обработки резанием имеют меньшую шероховатость, чем углеродистая сталь, обработанная в одинаковых с ними условиях. С увеличением твердости обрабатываемого материала величина шероховатости снижается.

Как уже отмечалось, одним из основных параметров качества поверхностного слоя являются физико-механические свойства, которые характеризуются твердостью; структурой; величиной, знаком и глубиной распространения остаточных напряжений; глубиной деформации слоя; наличием или отсутствием внешних дефектов (микротрещин, ликвации и т. п.).

Физико-механические свойства поверхностного слоя отличаются от исходного материала. Это связано с воздействием силовых и тепловых факторов при изготовлении и обработке заготовок.

Материал поверхностного слоя испытывает упрочнение (наклеп) или разупрочнение; изменяется его структура, микротвердость; образуются остаточные напряжения.

После механической обработки стальной заготовки в поверхностном слое выделяют три зоны (рис. 4.2, а):

I — зона резко выраженной деформации; характеризуется большими искажениями кристаллической решетки металла, раздроблением зерен, высокой твердостью;

//— зона деформации; в этой зоне наблюдается вытягивание зерен, наволакивание одних зерен на другие, понижение твердости;

/// — переходная зона; в этой зоне состояние слоя постепенно приближается к состоянию исходного материала.

Глубина поверхностного слоя зависит от метода и режимов обработки и составляет от 5 мкм при тонкой обработке до сотен мкм — при черновой.

а — структура; б — напряжения в поверхностном слое после абразивной обработки; в — напряжения в поверхностном слое после лезвийной обработки

Рисунок 4.2.– Поверхностный слой детали из стали

Физико-механические свойства поверхностного слоя определяются применяемыми методами и режимами изготовления и обработки заготовок.

При обработке лезвийным инструментом имеет место взаимодействие в основном силовых, а также тепловых факторов. Вследствие этого поверхностный слой имеет, как правило, сжимающие (отрицательные) напряжения

(рис. 4.2, в).

Однако при высоких скоростях главного движения резания остаточные напряжения могут быть растягивающими.

При шлифовании большее влияние оказывают тепловые факторы, меньшее — силовые. Характерные для шлифования высокие температуры в поверхностном слое вызывают структурную неоднородность и, вследствие этого, поверхностные прижоги, микротрещины, цвета побежалости. В поверхностном слое при шлифовании возникают остаточные напряжения растяжения, т. е. положительные (рис. 4.2, б).