Содержание
Аннотация
Задание
Введение
Технологический процесс, к которому прилагается схема автоматизации
Функциональная схема автоматизации
Заключение
Литература
Аннотация
В курсовой работе разработана схема автоматизации регулирования процесса смешивания. Приводится технологический процесс производства. Схема автоматизации с выбором и указаниями установки элементов.
Записка содержит страниц 13, 1 рисунок. Графическая часть содержит один лист формата А2.
Содержание записки:
описание технологии производства и обоснование необходимости автоматизации;
функциональная схема, ее описание, указания, лист установки первичных преобразователей и всех вторичных приборов.
Задание
Разработать функциональную схему участка технологического процесса смешивания двух сыпучих компонентов.
Введение
Пищевые производства основаны на химико-технологических процессах. Развитие пищевой технологии, создание новых непрерывных процессов и аппаратов большой мощности предопределяют необходимость автоматизации этих производств.
Измерительные приборы и автоматические устройства обеспечивают оптимальное протекание технологического процесса, недоступное ручному управлению. Поэтому автоматизация позволяет наиболее эффективно использовать все ресурсы пищевого производства, улучшить качество выпускаемой продукции и значительно повысить производительность труда.
Разработка систем автоматизации химико-технологических процессов пищевых производств осуществляется в трех измерениях:
1. определяют методы эффективного изучения закономерностей объекта управления при использовании физического и математического моделирования с применением ЭВМ;
2. создаются технологически и экономически целесообразные методы с установлением наиболее рациональных зависимостей между измеряемыми и управляющими координатами технологических процессов;
3. разрабатываются инженерные методы эффективного воплощения автоматизации, технические средства контроля и управления.
До недавнего времени в отрасли для управления технологическими процессами применялись в основном простейшие механические, пневматические и электрические регуляторы.
Однако за последние 15 – 20 лет положение существенно изменилось. В настоящее время существенно преобладают технологические процессы со сложными комплексами энергетических и материальных потоков. Эти обстоятельства, а также жесткие требования к качеству продукции привели к созданию более современных локальных систем автоматизации.
Для сепараторов большой единичной мощности технологических линий, в локальных системах автоматизации создаются местные пункты контроля и управления, значительно улучшаются условия труда обслуживающего персонала. На них устанавливаются пункты и щиты с контрольно – измерительными приборами, аппаратурой сигнализации, дистанционного пуска и остановки оборудования.
Для управления сложными технологическими процессами применяют новые технологические средства – вычислительную технику, а так же современные экономико-математические методы, обеспечивающие автоматизацию сбора и обработки информации, необходимой для принятия решений. Основой для осуществления такого автоматизированного процесса управления является применение ЭВМ.
Развитие автоматизации предусматривает комплексное совершенствование производства, направленное на экономию трудовых, материальных и топливно-энергетических ресурсов. Важнейшее значение придается работам по механизации и автоматизации трудоемких процессов на основе использования микропроцессорной техники.
Автоматизация технологических процессов коренным образом меняет характер труда человека, делая его более содержательным; увеличивает творческую деятельность человека с преобладанием функций анализа протекания процессов и принятие решений. Одновременно с этим, основанные на тяжелом труде.
Технологический процесс, к которому прилагается схема автоматизации
Под смешиванием принято понимать такой механический процесс, в результате которого первоначально находящиеся раздельно компоненты после равномерного распределения каждого из них в смешиваемом объеме материала образуется однородная смесь.
Сложность осуществления процесса смешивания зависит в первую очередь от агрегатного состояния смешиваемых продуктов. К числу наиболее неудобных для смешивания продуктов следует отнести сыпучие материалы, так как для составления из них однородных композиций требуются сложные энергоемкие устройства.
Материалы и аппараты, в которых смешиваются сыпучие компоненты обычно называют смесителями. По конструкции они весьма разнообразны и для выполнения одной и той же задачи смешивания порой используются десятки конструктивно-развитых смесителей.
Процесс смешивания складывается из следующих элементарных процессов:
1. Перемешивание группы смежных частиц из одного места смеси в другое внедрением, скольжением слоев (процесс конвективного смешивания);
2. Постепенное перераспределения частиц различных компонентов через свежеобразованную границу их раздела (процесс диффузного смешивания);
3. Сосредоточение частиц, имеющих одинаковую массу, в соответствующих местах смесителя под действием гравитационных сил (процесс агрегации).
Процесс агрегации по своему действию на смесь противоположен первым двум процессам – он ухудшает качество смеси.
В результате процесса перемешивания в смесителе происходит взаимное перемещение частиц разных компонентов, находящихся до перемешивания отдельно или в неоднородно-внедренном состоянии. В идеализированном процессе мы должны получить такую смесь, когда в любой ее точке к каждой частице одного из компонентов примыкают частицы другого компонента в количествах, определяемых заданным состоянием компонентов. Так, если смешиваются три компонента, массы которых относятся как целые числа p:g:m, то в любом малом объеме после идеального смешивания должны относится как p:g:m.
Однако такое идеализированное распределение частиц в действительности не наблюдается, так как слишком велико число факторов, которые влияют на их взаимное перемещение и от которых в конечном результате зависит степень смешивания.
Эти факторы можно разделить на три группы:
1. Методы смешивания (распыливание, пересыпание, переколачивание, наслаивание компонентов, смешивание компонентов в "кипящем слое" и так далее);
2. Конструктивные особенности смесителей и их режимы работы (степень заполнения, скорость и характер циркуляции материалов внутри смесителя, конструкция размешивающего органа, скорость его вращения);
3. Физико-механические характеристики смеси компонентов (соотношение смеси компонентов, их объемные массы, коэффициенты внутреннего трения и так далее).
Задачей управления процессами смешивания является поддержание заданного состава смеси. Для получения математической модели процесса смешивания используется управление материального баланса для всей смеси в целом и для отдельных компонентов.
Функциональная схема
Система автоматического регулирования какими-либо технологическими параметрами может быть представлена блок-схемой.
Цепь обратной связи:
ЧЭ – чувствительный элемент датчик, служит для съема первичной информации и ее преобразования;
У – усилитель – усиливает сигнал;
ИМ – исполнительный механизм;
РО – регулирующий орган;
О – объект;
сравнивающий элемент.Для смешивания двух или более потоков жидких и сыпучих компонентов применяют смесители периодического или непрерывного действия. Смесители снабжаются мешалками для ускорения смешивания и обеспечения равномерного состава смеси.
По качеству "расход вводимого компонента показатель качества смеси" смеситель может рассматриваться статический объект регулирования с запаздыванием или без него. Наличие запаздывания, а так же инерционность процесса смешивания зависит от эффективности перемешивания.
Возмущающее воздействие, вызывающее отклонение качества смеси от требуемого, связанных с изменением расходов компонентов смеси, а так же их свойств. Регулирующим воздействием являются изменение расхода подаваемых компонентов.
В простейшем случае схема автоматизации работы смесителя предусматривает стабилизацию расхода каждого компонента на заданном значении, либо поддержание процентного соотношения компонентов в смеси.
В данном случае заданная смесь формируется из двух компонентов К1 и К2.
Количество подаваемых компонентов измеряется расходомерами 1 – 1
и 2 – 1 , которые расположены по месту. На щите размещены вторичные показывающие и самопишущие приборы 1 – 2 - прибор для измерения расхода, бесканальный с передачей показаний и регистрирующий 2 – 2 , результаты измерений с которых подаются на регулятор соотношения 1 – 3 - прибор для измерения соотношения расходов регулирующий. Через панель дистанционного управления 1 – 4 , которая содержит панель выбора и дистанционного управления, регулятор воздействует на исполнительный механизм 1 – 5 регулирующего клапана ведомого компонента К2 в зависимости от расхода К1.