Смекни!
smekni.com

Применение подъемно-транспортных машин для комплексной механизации производства (стр. 37 из 38)

Расход воздуха в таких установках до 2 м3/мин на 1 м2 площади желоба. Средний угол уклона желоба α= 2,5°.

Скорость (м/с) движения материала ориентировочно можно определить по формуле

V 10 b tg , (17.1) где b – ширина желоба, м.

При одинаковых условиях (производительность, длина) мощность, необходимая для транспортирования груза пневможелобом, в 5 - 8 раз меньше, чем при транспортировании винтовым или другим конвейером. Существующие конструкции пневможелобов имеют производительность до 200 т/ч и более с дальностью транспортирования до 40 м и более. Расход воздуха при транспортировании составляет примерно 100 – 130 м3/ч на 1 м2 поверхности пористой перегородки. Транспортирование грузов насыщенным воздухом позволяет создать весьма простые и недорогие установки, обладающие герметичностью, отсутствием движущихся и изнашивающихся частей, малым расходом энергии, большой производительностью, малыми размерами. Недостатком является необходимость для транспортирования груза уклона желоба вниз, что ограничивает возможную длину транспортирования.

Пневматические винтовые подъемники (ГОСТ 15016–84) используют для перемещения порошкообразных и пылевидных материалов по вертикальному трубопроводу. Из бункера 2 (рис. 17.3, б) материал винтовым питателем 1 с переменным шагом подается в смесительную камеру 4 на пористое дно 5. С камерой связан вертикальный трубопровод 3. В камере материал подвергается аэрированию воздухом, подаваемым под давлением 50 ... 120 кПа через пористое дно 5, приобретает повышенную подвижность и в виде пульпы сплошным потоком перемещается по вертикальному трубопроводу.

Изготовляют подъемники трех типоразмеров производительностью 30, 60 и 100 т/ч при высоте подъема Н = 35 м.

Расход QВ3/ч) воздуха незначительный и зависит от производительности П и высоты подъема Н, в среднем QВ ≈ 0,2 … 0,3ПН. Давление в смесительной камере должно быть достаточным для рыхления и подъема материала. Давление, необходимое для подъема материала, должно превышать давление столба материала в вертикальной трубе.

С учетом потерь давления на рыхление, давление в смесительной камере обычно составляет 0,12 МПа.

Мощность (кВт) винтового питателя N ≈ ( 0,004 ... 0,006) ПН (где П – в т/ч, Н– в м). 17.4. Контейнерный трубопроводный пневмотранспорт.

Под давлением воздуха по трубам транспортируются штучные грузы, помещенные в специальные калиброванные патроны диаметром 60–200 мм, снабженные уплотнениями, уменьшающими утечку воздуха между ними и стенкой трубы. Такие транспортирующие устройства предназначены для перемещения почтовых и телеграфных материалов. Письма и документы транспортируются в патронах со скоростью 32–48 км/ч.

Контейнеры с грузом на опорах качения (колесах) со специальным уплотнением перемещаются внутри трубы в потоке воздуха, создаваемом воздуходувными станциями (рис. 17.4, а).

В контейнерах транспортируют следующие грузы: сыпучие (песок, щебень, уголь, руда), жидкие и крупные штучные. Состав контейнеров 1 передвигается пневмовозом 2, на котором устанавливают манжетные уплотнения. Соединяют контейнеры амортизирующими сцепками. Контейнер для сыпучих грузов (рис.17.б) состоит из кузова 1, ходовой части 2, ходовых колес 3 на осях 5 с амортизаторами 6, вмонтированными в ступицы 4. В кузове предусмотрены продольные перегородки 7. На рис. 17.4, в, г показаны контейнеры для транспортирования жидких и крупных штучных грузов.

Скорость контейнеров составляет 15...30 км/ч с дальнейшим повышением до 40...45 км/ч.

Перепады давления в трубопроводе небольшие: для передвижения состава контейнеров массой 65 т по горизонтальному трубопроводу диаметром 1220 мм перепад давления составляет всего 0,015 МПа; по наклонному участку (3°) – 0,045 МПа.

Практически в действующих системах избыточное давление не превышает 0,1...0,2 МПа, что позволяет применять трубы из малоуглеродистой стали, а для внутризаводского транспорта при перемещении легких грузов – стеклянные, пластмассовые, стеклопластиковые трубы. В дальнейшем вместо стальных магистральных труб предполагается применять железобетонные, асбоцементные и пластмассовые трубы.

Вследствие малых давлений в трубопроводах несложно решается вопрос уплотнения между контейнерами и внутренней поверхностью трубы.

Воздуходувные станции устанавливают на концевых участках магистрали и вдоль трассы. В зависимости от профиля трассы, диаметра труб, массы состава расстояние между станциями находится в пределах 5...15 км.

Загрузку и разгрузку на станциях можно осуществлять как с остановкой контейнеров, так и на ходу. Погрузочно-разгрузочные и транспортные операции полностью автоматизированы.

Для осмотра и обслуживания контейнеров на трассе установлены люки. Контроль за положением контейнеров на трассе и определение их скорости осуществляется специальными датчиками. Диспетчер при помощи регуляторов расхода воздуха может изменить скорость контейнеров. Режимы движения составов рассчитывают на ЭВМ.

Автоматизированные системы контейнерного пневмотранспорта экономично применять при расстоянии 3...150 км; с увеличением производительности до 10 млн. т/год расстояние снижается до 3...95 км.

Рисунок 17.4– Контейнерный трубопроводный пневмотранспорт

Расчет установки ведется на основе уравнения движения состава в трубопроводе. Для установившегося движения состава контейнеров (без инерционных сил) это уравнение можно записать;

∆р = mg(f cos β + sin β)/A, (17.2)

где ∆р – перепад давления; β – угол наклона трубопровода; m – масса состава контейнеров; А площадь поперечного сечения трубы; f – приведенный коэффициент трения.

Движение контейнерного состава в различных режимах описывают дифференциальными уравнениями второго порядка, где отражены все силы, действующие на состав. Давление газа по разным сторонам состава определяют на основании решения уравнений движения газа между составами, согласно положениям газовой динамики. 17.5. Гидравлические транспортирующие установки.

Гидравлические транспортирующие установки предназначены для перемещения насыпного груза в струе жидкости (воде) по трубам или желобам. Смесь насыпного груза с водой называют гидросмесью или пульпой, которая характеризуется отношением массы твердого компонента к массе жидкого компонента. Установки делят на напорные и безнапорные. В напорных пульпа перемещается насосами; в безнапорных – под действием составляющей от веса груза на наклонной плоскости.

Напорные гидравлические установки по способу ввода насыпного груза в трубопровод подразделяют на установки с пульпонасосом и с бункерной подачей (питателями). Гидроустановки применяют для транспортирования песка, угля, руд, горных пород, шлака, золы, грунтов и т. п. Кроме того, гидравлическим способом с помощью мониторов производят отделение полезного ископаемого от породы в забое с последующим транспортированием пульпы гидроустановками. Достоинства гидравлического транспорта: большая производительность и длина транспортирования по сложной пространственной трассе;простота конструкции, удобство обслуживания и эксплуатации-; возможность полной автоматизации работы гидроустановки; небольшая стоимость транспортирования насыпных грузов. К недостаткам относятся: ограничение крупности транспортируемых кусков; значительный износ трубопроводов при перемещении абразивных грузов;большой расход воды и энергии, возможность замерзания пульпы зимой. Однако несмотря на эти недостатки гидроустановки находят широкое применение, и в настоящее время область применения расширяется.

На ряде гидрошахт применен перспективный вариант гидротранспортировки угля непосредственно потребителям. Специально приготовленная пульпа, где мелкие частицы угля образуют суспензию, транспортируется под давлением, создаваемом насосными станциями. Производительность действующих установок 3,5...4 млн. тонн угля в год. В будущем будут созданы крупные магистрали протяженностью несколько сот километров, которые будут транспортировать 30...50 млн. тонн угля в год.

Рисунок 17.5– Схемы гидротранспортных установок

В установке с пульпонасосом (рис. 17.5, а) насыпной груз и вода образуют пульпу, которая из приемного устройства 2 засасывается пульпонасосом 1 (землесосом) и по трубопроводу 3 транспортируется к заданному месту разгрузки. Груз проходит через сито 4 и попадает в бункер 5, а вода – в отстойник 6 и насосом 7 по трубопроводу 8 подается обратно в приемное устройство.

В установке с бункерной подачей и питателем (рис. 17.5, б) вода из емкости засасывается насосом 9, в нагнетательный трубопровод 8 которого с помощью специального питателя 10 (винтового, камерного и др.) вводится насыпной груз. Образованная пульпа транспортируется далее по трубопроводу к намеченному пункту, где груз отделяется от воды, обычно возвращаемой к насосу для дальнейшего использования. С помощью такой установки можно транспортировать насыпные грузы с относительно крупными кусками. Важным преимуществом является работа насоса на воде, что позволяет использовать обычные насосы. Концентрация смеси при работе по этой схеме может быть весьма высокой. Давление жидкости около 10 МПа.

Движение груза в потоке воды в общем случае можно представить как скачкообразное движение отдельных частиц. Для уменьшения износа внутренней поверхности труб их армируют на специальных станках центробежной заливки различными твердыми материалами (плавленным базальтом). Закругления армируют обтесанными брусками гранита.