По составу магнитострикционная керамика представляет собой либо чистый феррит никеля (Ni
), либо твердые растворы на его основе.Из магнитострикционных материалов изготавливают сердечники электромеханических преобразователей (излучателей и приемников) для электроакустики и ультразвуковой техники, сердечники электромеханических и магнитострикционных фильтров и резонаторов, линий задержки. Их используют также в качестве чувствительных элементов магнитоупругих преобразователей, применяемых в устройствах автоматики и измерительной техники.[5]
3.3 Термомагнитные материалы
Эти материалы обладают сильной зависимостью магнитной индукции (точнее намагниченности) от температуры вблизи точки Кюри в полях, близких к полю технического насыщения материала. Термомагнитные материалы применяют главным образом в качестве магнитных шунтов или добавочных сопротивлений. Будучи включенными в магнитные цепи, они позволяют осуществить компенсацию температурной погрешности или обеспечить изменение магнитной индукции в воздушном зазоре по заданному закону. Для этих ферромагнетиков точка Кюри лежит между 0 и 100°С в зависимости от легирующих элементов. Сплав Ni - Сu при содержании Сu 30% компенсирует погрешность в интервале температур от 20 до 80°С, а при содержании Сu 40% - от -50 до + 10°С. Наибольшее техническое применение получили сплавы Fe – Ni - Cr, преимуществом которых является полная обратимость свойств в температурном интервале от -70 до +70°С и высокая воспроизводимость характеристик, а также хорошая механическая обрабатываемость.
Основная область применения - термокомпенсаторы и терморегуляторы магнитного потока в измерительных приборах (гальванометров, счётчиков электроэнергии, спидометров и т. п.), выполняемые в виде шунтов, ответвляющих на себя часть потока постоянного магнита. Принцип действия такого шунта основан на том, что с повышением температуры резко уменьшается его намагниченность, вследствие чего увеличивается поток в зазоре магнита.
Применяются также в реле, момент срабатывания которых зависит от температуры.
3.4 Магнитные жидкости
Магнитные жидкости — это высокодисперсные суспензии (коллоидные растворы) ферромагнитных материалов в обычных жидкостях, таких как вода, жидкие углеводороды, кремний- и фторорганические жидкости. В середине 60-х годов они были одновременно синтезированы в США и России.
Магнитные жидкости уникальны тем, что высокая текучесть сочетается в них с высокой намагниченностью - в десятки тысяч раз большей, чем у обычных жидкостей. Секрет такой высокой намагниченности заключается в том, что в обычную жидкость, например в жидкий углеводород, внедряется огромное количество мелких сферических частиц (размер их около 10 нм), которые представляют собой миниатюрные постоянные магниты. Каждая такая частица покрыта тонким слоем защитной оболочки, что предотвращает слипание частиц, а тепловое движение разбрасывает их по всему объему жидкости. Поэтому в отличие от обычных суспензий частицы в магнитных жидкостях не оседают на дно, и последние могут сохранять свои рабочие характеристики в течение многих лет.
Высокая чувствительность свойств раствора к внешнему полю позволяет управлять поведением магнитных жидкостей и использовать их в прикладных задачах.
Очень интересна гидродинамика магнитной жидкости в переменном магнитном поле. С его помощью можно заставить вращаться коллоидные частицы, каждая из которых будет генерировать вокруг себя микроскопический гидродинамический вихрь. Взаимодействие множества таких вихрей приводит к ряду новых явлений, специфичных только для магнитных жидкостей. В первую очередь это так называемый ротационный эффект — генерация крупномасштабных гидродинамических течений в магнитной жидкости, помещенной во вращающееся магнитное поле.
Магнитные жидкости не относятся к материалам массового спроса. Как правило, их производят небольшими партиями и используют в высокотехнологичных устройствах и приборах: в системах герметизации ввода вращающихся валов, антифрикционных узлах и демпферах, в ультразвуковой дефектоскопии и высококачественных громкоговорителях, магнитных сепараторах редких элементов, датчиках наклона и высокочувствительных измерителях ускорений, микроманометрах и исполнительных механизмах роботов.
Хотя в изучении магнитных жидкостей американские и российские ученые стартовали одновременно, на Западе научные разработки нашли более широкое практическое применение. В США, например, существует специализированная корпорация, которая производит магнитные жидкости и устройства на их основе.[ 6]
Рисунок 5 - Вихревое течение магнитной
жидкости вблизи источника переменного
магнитного поля
3.5 Магнитотвёрдые материалы
Магнитотвёрдые материалы - магнитные материалы, характеризующиеся высокими значениями коэрцитивной силы
. Качество магнитотвердых материалов характеризуют также значения остаточной магнитной индукции , максимальной магнитной энергии, отдаваемой материалом в пространство и коэффициента выпуклости. Материалы также должны иметь высокую временную и температурную стабильность перечисленных параметров и удовлетворительные прочность и пластичность.Для получения высокой коэрцитивной силы в магнитных материалах кроме выбора химического состава используют технологии, оптимизирующие кристаллическую структуру и затрудняющие процесс перемагничивания. Это закалка сталей на мартенсит, дисперсионное твердение сплавов, создание высоких внутренних механических напряжений и др. В результате затрудняются процессы смещения доменных границ. У высококоэрцитивных сплавов магнитная текстура создается путем их охлаждения в сильном магнитном поле.
Магнитотвердые материалы намагничиваются до насыщения и перемагничиваются в сравнительно сильных магнитных полях.
Применяют магнитотвердые материалы для производства постоянных магнитов. Они являются источниками постоянных магнитных полей, используемых в различной аппаратуре в электро- и радиотехнике, автоматике, приборостроении, электронике, в устройствах электромагнитной записи, фокусирующих устройствах для телевизоров, микрофонах, электроизмерительных приборах, микроэлектронике, СВЧ-приборах и т.д. Их используют в электрических машинах малой мощности, для записи и хранения цифровой, звуковой и видеоинформации и др. Преимущества постоянных магнитов по сравнению с электромагнитами постоянного тока - повышенная работоспособность; экономия материалов и потребления энергии; экономическая и техническая выгода применения.
Важнейшее требование к постоянному магниту — получение максимальной магнитной энергии в рабочем зазоре, поэтому удельная магнитная энергия
(энергия, отнесенная к единице объема магнита) — одна из важнейших характеристик магнитотвердых материалов. Она пропорциональна произведению: = /2Где B и H — максимальные значения остаточной индукции внутри магнита и размагничивающей напряженности, соответственно.
Иногда магнитотвердые вещества характеризую произведением
, которое называется энергетическим произведением.С усилением прямоугольности петли гистерезиса коэффициент выпуклости приближается к единице.
Чем больше остаточная индукция, коэрцитивная сила и коэффициент выпуклости, тем больше максимальная энергия магнита. Магнитотвердые материалы намагничиваются с трудом, но зато длительное время сохраняют сообщенную энергию. Намагничивание происходит в основном за счет вращения вектора намагниченности.
По составу и способу получения магнитотвердые материалы подразделяются на легированные стали, закаленные на мартенсит, литые высококоэрцитивные сплавы, порошковые магнитотвердые материалы, магнитотвердые ферриты, пластически деформируемые сплавы, сплавы для магнитных носителей информации.
3.5.1 Литые высококоэрцитивные сплавы
К этой группе относятся сплавы систем Fe-Ni-Al (ални) и Fe-Ni-Co-Al, модифицированные различными добавками. Литые высококоэрцитивные сплавы являются основными промышленными материалами для изготовления постоянных магнитов. Они являются активными элементами многих приборов и характеризуются благоприятным соотношением между магнитными свойствами и стоимостью производства. Их магнитные характеристики:
=30-110 кА/м, =3-30 кДж/м3.