Смекни!
smekni.com

Проектирование и исследование механизма двигателя внутреннего сгорания Проектирование кривошипно-ползунного (стр. 1 из 9)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Национальный аэрокосмический университет им Н.Е. Жуковского

ПРОЕКТИРОВАНИЕ И ИССЛЕДОВАНИЕ МЕХАНИЗМА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Пояснительная записка к курсовому проекту

Дисциплина – «Теория машин и механизмов»

Харьков 2009


Введение

Среди рычажных механизмов различных типов одним из наиболее распространенных в технике являются кривошипно-ползунные механизмы (КПМ). Они используются в двигателях внутреннего сгорания (ДВС), компрессорах, насосах, ряде станков (например, прессах) и других машинах различного назначения, включая наземные и воздушные транспортные средства.

Поршневые ДВС служат для преобразования теплоты, выделяющейся при сгорании топлива в цилиндрах, в механическую работу. Механизмы одноцилиндровых ДВС имеют сравнительно небольшую мощность

. Они применяются в основном в энергоустановках для привода в движение электрогенераторов, компрессоров, воздуходувных установок, в самоходных шасси, служат для перемещения грузов и т.д.

Одним из эффективных средств повышения мощности ДВС является увеличение числа их цилиндров. Поэтому многоцилиндровые ДВС широко распространены в современной технике. В авиации ДВС сейчас применяются в вертолетах, легких транспортных, спортивных и учебных самолетах.


1. Проектирование кривошипно-ползунного механизма ДВС

1.1 Определение линейных размеров звеньев механизма

Проектирование кинематической схемы кривошипно–ползунного механизма (КПМ) заключается в выборе в соответствии с заданными условиями и требованиями значений линейных размеров кривошипа и шатуна.

Определяем ход поршня:

,

где:

– диаметр поршня.

Запишем ход поршня через длину кривошипа:

Из отношения длины шатуна к радиусу кривошипа

определим длину шатуна:

В качестве начального звена в КПМ выбрано кривошип. Условие существования КПМ:


1.2 Структурный анализ механизма

Рисунок 1.2.1. Механизм ДВС – кривошипно-шатунный механизм

1.2.1. Определяем число подвижных звеньев:

1.2.2. Подсчет и классификация кинематических пар 5 и 4 класса:

1. (0–1) – НКП, вращательная, 5 класса;

2. (1–2) – НКП, вращательная, 5 класса;

3. (1–4) – НКП, вращательная, 5 класса;

4. (2–3) – НКП, вращательная, 5 класса;

5. (3–0) – НКП, поступательная, 5 класса;

6. (4–5) – НКП, вращательная, 5 класса;

7. (5–0) – НКП, поступательная, 5 класса.

Таким образом,

Определение степени подвижности:

Выделение основного механизма – основной механизм это первое звено и стойка с соединяющей их кинематической парой.


Рисунок 1.2.2. Основной механизм первого класса

Выделение 1-й в порядке наслоения группы Ассура – звено 2–3, 4–5.

Рисунок 1.2.3. Первая в порядке наслоения группа Ассура 2-го класса 2-го вида

Рисунок 1.2.4. Вторая в порядке наслоения группа Ассура 2-го класса 2-го вида


Определение класса механизма в целом. Механизм 2-го класса, так как в его состав входит структурная группа второго класса.

1.3 Кинематический анализ механизма

Метод замкнутых контуров устанавливает связь между геометрическими и кинематическими параметрами механизма и основан на условии замкнутости контуров. В механизмах 2-го класса количество замкнутых контуров равно количеству структурных групп 2-го класса, образующих механизм. Если звенья механизма принять за векторы, то в процессе движения конфигурация векторного многоугольника изменяется, но условие замкнутости сохраняется, т.е. в любом положении механизма геометрическая сумма векторов равна нулю.

Рисунок 1.3.1. Замкнутый векторный многоугольник

Кинематическая схема механизма приведена на рис. 1.3.1. Направляющие ползунов наклонены относительно системы координат

. Целесообразно выбрать новую систему координат
, начало
которой совмещено с осью вращения кривошипа 1, а ось
абсцисс ориентирована параллельно направляющим ползуна 3. Для однозначного определения направляющих углов
и
со звеньями 1 и 2 связываются векторами
. Длину шатуна 2 и положение точки
на шатуне выражено через длину
кривошипа:

Направляющий угол

вектора
:

где:

координаты начала
и конца
вектора
которые выражены в виде соотношений:

После подстановки уравнений

в
имеется:

или


Функция положения точки

ползуна 3 соответствует выражению

Функция положения точки

на шатуне 2

Кинематические передаточные функции получаются путем дифференцирования соотношений

по обобщенной координате
.

Передаточное отношение

угловых скоростей шатуна и кривошипа

или окончательно

Передаточные функции скорости некоторых точек: точки

на ползуне

или окончательно

точки

на шатуне:

Угловое ускорение шатуна 2:

или

Передаточная функция углового ускорения шатуна 2 определяется соотношением