– методом пробных деталей;
– по калибрам наладчика (с меньшими полями допусков);
– статическая наладка (на неработающем станке) по эталону.
Деформации системы станок-приспособление-инструмент-деталь
Система станок-приспособление-инструмент-деталь (СПИД) - это замкнутая упругая система, в которой в процессе обработки действуют силы резания, закрепления и силы тяжести. Эти силы вызывают деформации, влияющие на точность обработки.
Точность обработки зависит от жесткости системы. Под жесткостью упругой системы понимают ее способность оказывать сопротивление действию сил, стремящихся ее деформировать. При отсутствии достаточной жесткости под действием сил резания и других сил система деформируется, что приводит к искажению формы детали и получению ее неправильных размеров. С жесткостью системы СПИД связано и явление вибрации. Системы, обладающие большой жесткостью, могут работать с более высокими режимами резания без появления вибраций, что обеспечивает большую производительность. На рисунке 4.4 показана деформация вала под действием сил резания при обработке на токарном станке в центрах без люнета. На рисунке 4.5 показано разложение силы резания на составляющие.
Рис. 4.4. Деформация вала при обработке на токарном станке
в центрах без люнета
На точность обработки преимущественно влияют те деформации системы, которые изменяют расстояние между режущей кромкой инструмента и обрабатываемой поверхностью, т.е. деформации, направленные по нормали к обрабатываемой поверхности. Поэтому в технологии машиностроения жесткостью технологической системы принято называть отношение составляющей силы резания Py, направленной по нормали к обрабатываемой поверхности, к смещению у режущей кромки инструмента в том же направлении:
P
j. (4.7) yРис. 4.5. Разложение силы резания на составляющие
Величина деформации прямо пропорциональна силе Py и обратно пропорциональна жесткости системы:
P
y
. (4.8) Введя понятие податливости системы как величины, обратной жесткости 1 j , получим: y Py . (4.9)Погрешность, вызванная деформациями всех звеньев системы СПИД
. (4.10)Высокая жесткость системы СПИД является одним из основных условий обеспечения точности обработки.
Повышение жесткости технологической системы приводит к уменьшению вибраций ее звеньев и, следовательно, позволяет повышать режимы резания, не снижая точности обработки.
Тепловые деформации
На точность механической обработки деталей существенно влияют температурные деформации обрабатываемой детали, инструмента и деталей станка, вызываемые их нагревом.
Тепловые деформации возникают из-за нагрева детали и инструмента в зоне резания и нагрева станка теплом, образующимся при трении движущихся частей станка. Тепловые деформации особенно влияют на точность деталей при выполнении окончательных, чистовых операций.
При обработке с охлаждением детали и инструмента смазывающеохлаждающей жидкостью тепловые деформации всей системы СПИД значительно уменьшаются.
Остаточные напряжения в материале заготовок
Внутренними или остаточными называют напряжения, существующие в заготовке при отсутствии внешних нагрузок. Они полностью уравновешиваются, и их действие в заготовках внешне не проявляется
Причиной появления внутренних остаточных напряжений является неравномерное охлаждение заготовки при литье, ковке, штамповке, сварке.
Особенно характерны внутренние напряжения для крупных, нежестких и толстостенных заготовок.
С течением времени внутренние напряжения в заготовке выравниваются. При снятии поверхностного слоя материала (особенно при черновых операциях, где снимается значительный слой) происходит нарушение равновесия внутренних напряжений и деталь деформируется из-за их перераспределения. Это особенно проявляется при обработке крупных литых заготовок.
Для снятия внутренних напряжений заготовок применяют медленное охлаждение (например, вместе с печью) и термообработку (отжиг, отпуск, старение естественное или искусственное). Термообработку применяют и после черновой обработки перед чистовыми операциями. На чистовых операциях уменьшаются деформации, полученные на черновых операциях. Чистовые операции, на которых снимается очень небольшой слой металла, исправляют форму детали и придают ей окончательные размеры.
Погрешность измерения
На погрешность измерения влияют точность мерительного инструмента и качество поверхности детали. Если поверхность детали имеет большую шероховатость, то при контроле размера детали измерение производят по вершинам или впадинам микронеровностей, что может существенно повлиять на показания при измерении. Чтобы достичь заданной точности размеров детали и установить при контроле, действительно ли получен заданный размер, необходимо обеспечить при обработке надлежащий класс шероховатости поверхности. Степень точности размера и параметры шероховатости поверхности связаны между собой. Параметр шероховатости Rz для размеров 5 - 10 квалитетов точности не должен превышать 25 % величины поля допуска на обрабатываемый размер. Для размеров, выполняемых по 11 и более грубым квалитетам, параметр шероховатости не должен превышать 12,5 % от величины поля допуска. Суммарную погрешность обработки трудно определить теоретически изза различного характера и направленности перечисленных погрешностей. Одни погрешности дают увеличение размеров, другие - уменьшение; некоторые погрешности компенсируют друг друга, другие, наоборот, накладываются и увеличивают общую погрешность. Путем расчета определить влияние каждого из перечисленных факторов при их совместном действии затруднительно. Поэтому, общую погрешность обработки представляют как алгебраическую сумму погрешностей, учитывая те погрешности, которые действуют в направлении обрабатываемого размера
. (4.11)В справочной литературе приводятся таблицы достижения определенной точности различными методами обработки и инструментами, т.е. приводится величина технологического допуска
на выполняемый размер. Общая погрешность обработки должна находиться в пределах поля допуска на выполняемый размер . (4.12)Таблицы составляются на основании опытных данных для различных методов обработки. Этими таблицами пользуются при проектировании технологических процессов.
Рассматриваемые вопросы: Понятие о качестве поверхности. Качество поверхностей заготовок. Факторы, влияющие на качество поверхности при механической обработке. Параметры для нормирования шероховатости. Влияние качества поверхности на эксплуатационные свойства деталей машин
Под качеством поверхности детали (заготовки) понимают состояние ее поверхностного слоя как результат воздействия на него одного или нескольких последовательно применяемых технологических методов обработки.
Качество обработанной поверхности характеризуется двумя основными признаками:
- шероховатостью поверхности;
- физико-механическими свойствами поверхностного слоя.
Качество поверхности оказывает значительное влияние на эксплуатационные свойства деталей машин, поэтому требования к качеству поверхности устанавливаются исходя из назначения данной поверхности.
Задача конструктора при проектировании детали - установить параметры шероховатости поверхности, исходя из назначения детали и условий ее работы. Задача технолога - обеспечить получение заданной шероховатости поверхности в процессе изготовления детали наиболее экономичными методами.
На шероховатость поверхностей заготовок в процессе их получения влияют различные факторы. Заготовки из проката имеют следы шероховатостей прокатных валков. У горячештампованных заготовок на поверхности остаются следы окалины и воспроизводятся поверхностные неровности штампов. Шероховатость поверхностей отливок зависит от шероховатости стенок литейных форм, величины зерен формовочной смеси, плотности ее набивки.
Поверхностный слой заготовок по своей структуре, химическому составу и механическим свойствам отличается от аналогичных параметров основного материала, поэтому его называют дефектным. Глубина дефектного поверхностного слоя зависит от способа изготовления заготовок.
Поверхностный слой заготовок, полученных горячими методами обработки, имеет обезуглероженную зону.
В таблице 5.1 приведены параметры шероховатости и глубина обезуглероженного слоя для заготовок, полученных разными способами.