Смекни!
smekni.com

Редуктор 1-ступенчатый цилиндрический (стр. 4 из 9)

Составляющие нормальной силы Fn, действующей в зацеплении зубчатых колес, определяем по формулам табл. 5.1 и результаты расчетов заносим в табл. П.5.2:

Таблица П.5.2

Значения сил в зацеплении колес (при aw= a= 20°)

п/п

Название

силы

Расчетная

формула

Значение силы (в Н) в зацеплении колес
прямозубые
1 Окружная
1855
2 Радиальная
675
3 Осевая

5.4. Проверка зубьев колес на контактную выносливость

Расчет производится с целью исключения возможности выкрашивания рабочих поверхностей зубьев. При найденных выше значениях параметров зубчатой передачи определяем рабочее контактное напряжение

и сравниваем его с расчетным допускаемым контактным напряжением
; при этом используем зависимость (3.8):

.

Для определения расчетных значений коэффициентов, входящих в эту формулу, вычисляем окружную скорость колес

υ = 0,5d1ω1 = 0,5∙92,5∙10-3∙23 = 1,1 м/с,

по которой (см. табл. П.7) назначаем 9-ю степень точности их изготовления:

= 9.

Коэффициент динамичности нагрузки

: согласно табл. П.11
= 1,05 – для прямозубой передачи (при окружной скорости колес υ = 1,1 м/с);

коэффициент

, учитывающий характер распределения нагрузки между зубьями в прямозубом зацеплении
,

Значение коэффициента

было принято ранее:
1,05.

При фактическом значении передаточного числа передачи

2,03 расчетное контактное напряжение в прямозубой передаче при её параметрах и найденных значениях расчетных коэффициентов:

<
427 МПа.

Недогрузка этой передачи составляет 12% , что меньше нормативного показателя в 20% для прямозубых передач и поэтому допустима.

5.5. Проверка прочности зубьев колес на усталость при изгибе

Предотвращение усталостной поломки зубьев шестерни или колеса от напряжений изгиба

гарантируется при соблюдении условия

где

– окружная сила;
– ширина венца шестерни (или колеса);
– коэффициент формы зуба, определяемый по табл. П.12 отдельно для шестерни и колеса в зависимости от числа зубьев (или эквивалентного числа зубьев
); коэффициент
динамичности нагрузки, который находят по табл. П.11, а коэффициент
определяют по формуле (3.11);
– коэффициент повышения изгибной прочности зубьев косозубых передач по сравнению с прямозубыми: для прямозубых
,

для прямозубых колес –

= 1,28.

При эквивалентных числах зубьев шестерни и колеса

коэффициенты формы зуба (см. табл. П.12): для прямозубых колёс (при

и
75):
3,75 и
3,61. Тогда расчетные напряжения изгиба в основании зубьев колеса и шестерни составят соответственно:

для прямозубой передачи:

Условия прочности выполняются, поэтому прочность зубьев на изгиб обеспечивается.

6. Предварительный расчет валов редуктора и эскизная компоновка передачи.

6.1. Предварительный расчет

Исходными данными для расчета валов на этом этапе являются вращающие моменты

и
, передаваемые валами.

Назначаем материалы валов из числа рекомендуемых: для тихоходного вала примем сталь 45 в состоянии нормализации (σТ = 290 МПа и σв = 570 МПа), при этом имеем в виду, что материал для вала-шестерни (быстроходный вал редуктора) был выбран ранее при расчете зубчатых передач. Хвостовики (концевые участки входных и выходных валов) выполняем цилиндрическими. Их диаметр dх определяем из расчета на кручение при пониженных допускаемых касательных напряжениях [t] = 12…20 МПа по формуле, приведенной в табл. 7.1, с последующим округлением до стандартного значения. Эти и многие другие данные, полученные на этом этапе расчета применительно к выбранной ранее типовой схеме компоновки передачи в редукторе (см. рис. П.7.1), заносим в табл. П.7.1.

По найденным размерам (включая размеры зубчатых колес) делаем эскизную компоновку редуктора на миллиметровке (в масштабе 1:2), соблюдая порядок выполнения, описанный в п.6. За основу берем эскиз компоновки цилиндрической зубчатой передачи, приведенный на рис. 7.1: для облегчения дальнейшей работы над составлением рабочих чертежей отдельных деталей привода рядом с обозначением рассчитанных параметров проставляем в скобках их числовые значения. Затем строим расчетные схемы валов и приступаем ко 2-му этапу: расчету валов на статическую прочность.

6.2. Эскизная компоновка редуктора

Эскизная компоновка имеет своей целью конструктивно оформить зубчатые колеса, валы, корпус, подшипниковые узлы и крышки подшипников. Компоновочный чертеж выполняем на миллиметровой бумаге в масштабе 1:2 в одной проекции. За основу берем схему передачи, представленную на рис. П.7.1. Эскизную компоновку проектируемой передачи выполняем в следующей последовательности: проводим линию, соответствующую средней плоскости редуктора, и наносим осевые линии валов на расстоянии

; затем изображаем валы с соблюдением размеров, определенных в п. 7.1, при этом шестерню выполняем за одно целое с быстроходным валом (вал-шестерня); после чего вычерчиваем зубчатое колесо тихоходного вала по данным табл. П.3.2 и рис. П.3.1, показываем в разрезе подшипники качения (одну половину полностью, а для второй наносим лишь габариты).

Между торцами подшипников и внутренней полостью корпуса располагаем маслоудерживающие кольца (см. рис. П.5); их торцы должны выступать внутрь корпуса редуктора на 1÷2 мм, поэтому они будут играть одновременно и роль маслоотбрасывающих колец.

Вычерчиваем крышки подшипниковых узлов с уплотнительными прокладками толщиной ≈1 мм и болтами. В крышках прочерчиваем уплотнения манжетного типа для удержания жидкого масла.

Для фиксации зубчатого колеса в осевом направлении предусматриваем с одной стороны буртик, а с другой – устанавливаем распорную втулку.

7. Расчет валов редуктора на статическую прочность с учетом нагрузки от ременной передачи.

Данный этап расчета валов базируется на тех разделах курса сопротивления материалов, в которых рассматривается неоднородное напряженное состояние; при этом действительные условия работы вала заменяются условными, что приводит к созданию упрощенных расчетных схем. При переходе от реальной конструкции вала к расчетной схеме допускаем схематизацию нагрузок, опор и формы вала, вследствие чего этот расчет также будет приближенным. Расчетные нагрузки, в отличие от действительных, рассматриваем как сосредоточенные, при этом собственным весом валов и расположенных на них деталей пренебрегаем. Подшипниковые узлы заменяем шарнирно-неподвижной (А) и шарнирно-подвижной (В) опорами. Расчетные схемы быстроходного и тихоходного валов редуктора показаны на рис. П.7.2. Расчет валов приведен ниже.