V. Медикаменты и химико-фармацевтическая продукция. Продукция химической промышленности используется в ряде отраслей народного хозяйства: в машиностроении (пластмассы, лакокрасочные материалы, клеи, герметики, резины), сельском хозяйстве (удобрения и ядохимикаты), здравоохранении (лекарственные препараты, витамины) и т. д. Это накладывает определенные требования на качество химических продуктов, оно должно соответствовать требованиям стандартов. Качество химической продукции зависит как от качества применяемого исходного сырья, так и в значительной степени от уровня технология ее производства.
К важнейшим процессам химической неорганической технологии относится производство аммиака, неорганических кислот (серной азотной, соляной) и минеральных удобрений (азотных, фосфорным калийных и комплексных). Особое место отводится серной кислоту По объему производства и области применения она занимает одно из первых мест среди продукции химической промышленности. Серная кислота служит одним из главных продуктов, определяющих развитие химической промышленности, и используется в различных отраслях производства: в химической промышленности - для производства удобрений, получения красителей, пластмасс, химических волокон, при производстве нефтепродуктов и др.; в металлургии - при выделенш металлов из руд; в машиностроении - при травлении; в пищевой промышлешости - при получении патоки, крахмала, спирта; в текстильной - при отбеливании тканей и т. д.
Серная кислота - это бесцветная маслянистая жидкость с удельным весом 1,84 г/см3. Исходным веществом При ее получении служит сернистый ангидрид SO2, образующийся при обжиге различных серосодержащих продуктов. По химическому составу серная кислота представляет собой соединение серного ангидрида SO3 с водой. В зависимости от их соотношения серная кислота может быть разбавленной, концентрированной или в виде олеума (растворного ангидрида в серной кислоте), которые и производятся в промышленности.
Сырьем для производства серной кислоты служат:
1, Сера - лучшее сырье для производства. При ее сжигании образуется чистый концентрированный сернистый газ, не загрязненный примесями, что упрощает его очистку при производстве серной кислоты. Но чистая сера – слишком дорогое сырье, вследствие чегв себестоимость серной кислоты в два раза выше, чем при ее производстве из колчеданов FeS;,
2. Серный колчедан FeS; широко распространен в природе. При наличии от 40 до 50 % серы в нем содержится также много ценных примесей (мышьяк, селен, медь, никель, серебро, золото и др.), которые тоже извлекаются.
3 Сероводород - значительное количество выделяется из газов нефтеперерабатывающей промышленности.
4 Отходящие газы цветной металлургии, образующиеся при переработке сернистых руд.
Использование сероводорода и отходящих газов цветной металлургии позволяет снизить себестоимость производства серной кислоты и, кроме того, улучшить условия труда на металлургических заводах и нефтеперерабатывающих предприятиях.
В настоящее время в промышленности серную кислоту получают двумя способами - нитрозным и контактным. В обоих случаях сущность процесса сводится к окислению сернистого газа SO; до серного SO3 и соединению трехокиси с водой. В обычных условиях сернистый газ кислородом воздуха не окисляется, поэтому процесс окисления осуществляется либо при помощи азота, либо в присутствии твердого катализатора. Способ окисления и определяет технологию производства.
Нитрозный способ производства серной кислоты является более старым. Двуокись окисляют до SO3 при помощи нитрозной смеси, состоящей из окиси и двуокиси азота, взятых в соотношении 1:1. Этот способ обладает рядом недостатков: трудно поддается автоматизации, получаемая кислота имеет концентрацию не более 75-77 % и загрязнена примесями. Имеющиеся недостатки привели к тому, что нитрозный способ производства серной кислоты утрачивает свое значение, и преимущественное развитие получает контактный метод.
Сущность контактного способа заключается в окислении двуокиси серы в присутствии твердого катализатора. Первоначально в качестве катализатора использовали платину. Затем она была заменена более дешевым и устойчивым катализатором на основе пятиокиси ванадия ViO5.
При контактном способе производства может быть получена серная кислота практически любой концентрации и высокой степени чистоты. Такая серная кислота может быть использована в любом производстве. Серная кислота, полученная нитрозным способом по устаревшей технологии, используется при производстве сельскохозяйственных удобрений, где не требуется высокой концентрации и чистоты исходных продуктов.
Минеральные удобрения - это вещества, ускоряющие биохимические процессы формирования и роста растений в почвах, бедных питательными элементами. Минеральные удобрения разделяются по видам и числу питательных элементов на простые - азотные, калийные, фосфорные и комплексные, содержащие несколько питательных макроэлементов. Кроме того, используются минеральные удобрения, содержащие микроэлементы (иод, бор, марганец, медь), которые могут входить в состав комплексных. Внесение минеральных удобрений в почву позволяет избежать ее истощения уменьшения урожайности.
Минеральные удобрения при правильном их использовании обеспечивают прирост урожая на 30-70 %. Кроме того, они улучшают качество продукции - повышают содержание сахара в свекле и винограде, крахмала в картофеле, белка в зерне, увеличивают прочность волокон льна и хлопка. Также повышается устойчивость растений к болезням, засухе и холоду. Использование минеральных удобрений в зерновом хозяйстве снижает общие затраты труда на выращивание урожая на 35-40 % и себестоимость зерна на 20 %.
Производятся минеральные удобрения в жидком и твердом^ виде. Жидкие удобрения экономически выгоднее, так как технология их производства проще. Однако требуются специальные склады и транспортные средства, поэтому их производство ограничено. В основном это удобрения на основе аммиака и аммиачной воды. Твердые удобрения производятся в гранулированном и мелкокристаллическом виде. Из них наиболее удобны в применении гранулированные удобрения.
Преимущественно для производства простых минеральных удобрений используют аммиак, азотную, серную и фосфорную кислоты и соли'калия. Производятся они с помощью реакций химического синтеза. Наиболее распространенные азотные удобрения: безводный аммиак, карбамид (мочевина), аммиачная селитра, сульфат, аммония; фосфорные удобрения (фосфор усваивается растениями в виде PО43-): двойной суперфосфат, фосфоритная мука, преципитат, обесфторенный фосфат; калийные удобрения (калий усваивается растениями в виде К+)- сульфат калия, хлористый калий, сильвинит, каинит.
Наиболее перспективные - комплексные минеральные удобрения, так как они содержат несколько питательных элементов. По способу производства эти удобрения подразделяются на смешанные и сложные. Смешанные получаются механическим смешиванием нескольких простых удобрений, когда необходимо одновременно в один и тот же срок внести под возделываемую культуру два или более питательных веществ в строго определенном соотноше-ши (например, суперфосфат и аммиачная селитра). Сложные получаются при химическом взаимодействии полуфабрикатов, например: аммофос - из аммиака и фосфорной кислоты; нитрофоска - из хлористого калия, аммиака, серной кислоты и фосфорита.
Смешанные удобрения характеризуются универсальностью применения но при изготовлении на местах потребления трудоемки, требуют специального оборудования, в результате чего не всегда обеспечивают удовлетворительное качество. Сложные удобрения имеют меньшую себестоимость, высокое качество и равномерно усваиваются. Однако они ограничены в использовании, так как для одной и той же культуры, выращиваемой в различных почвепно-климатических зонах, требуются удобрения с разным соотношением основных питательных элементов.
Топливом называются твердые, жидкие и газообразные горючие вещества, являющиеся источником тепловой энергии и сырьем длн химической промышленности.
В результате химической переработки различных топлив получают большое количество углеводородного сырья для производства пластических масс, химических волокон, синтетических каучуков, лаков, красителей, растворителей и т. п. Например, при коксовании углей получают: бензол, толуол, ксилолы, фенол, нафталин, антрацит, водород, метан, этилен и другие продукты. В качестве сырья используются газы, выделяемые при добыче нефти и ее переработке (крекинге, пиролизе, риформинге). Эти газы содержат метан, этан, пропан, бутан, этилен, пропилен и др.
Все топлива по агрегатному состоянию делятся на твердые, жидкие и газообразные; по происхождению - на естественные и искусственные (табл. 2). Искусственные топлива получают в результате переработки естественных топлив.
Агрегатное состояние топлива | Топливо | |
естественное | искусственное | |
Твердое Жидкое Газообразное | Древесина, торф, уголь, сланцы Нефть Природный газ, Попутные газы | Кокс, полукокс, древесный уголь Бензин, керосин, лигроин, мазут и др. Коксовый газ, генераторные газы, газы нефтепереработки |
Одним из важнейших видов химического сырья является природный газ, содержащий до 98 % метана. Древесина является источником получения целлюлозы, этилового спирта, уксусной кислоты и других продуктов. Из сланцев и торфа производят горючие газы, сырье для производства масел, моторных топлив, высокомолекулярных соединений и т. п.