Охлаждение губчатого железа по способам "Мидрекс", НСК и "ХиЛ-I" осуществляется в соответствующей зоне (по способу НСК — в отдельном резервуаре) циркулирующим потоком охлаждающего газа. Содержание углерода в готовом продукте определяется химическим составом этого циркулирующего газа. По способу "Армко" (см. П.2. Рис. 2.) охлаждающий газ вместе со свежим восстановительным газом поступает в зону восстановления.
В системе шахтной печи по способу "Пурофер" и НСК никакого охлаждения не предусматривается. Горячий готовый продукт выгружают в закрываемые резервуары и в них доставляют к установке горячего брикетирования, можно также загружать губчатое железо в горячем виде непосредственно в электропечи.
С 1983 г. и в процессе "Мидрекс" в качестве варианта предусмотрена выдача продукта из восстановительной печи через шлюз без охлаждения с последующим горячим брикетированием. Получение губчатого железа в брикетированной форме оказывается все более выгодным, потому что при этом удается удачно решить проблемы, связанные с его транспортировкой на большие расстояния (самовозгорание, выделение пыли) [1,15,17].
Для получения восстановительного газа из природного применяются различные системы. Так, по способам "ХиЛ-1", "Армко" и "ХиЛ-Ш" используют конверсию паром (паровой риформинг), хорошо зарекомендовавшую себя в нефтехимии. При этом подводимый газ должен быть достаточно полно очищен от серы [доля серосодержащих компонентов не должна превышать 10-4 % (объемн.)], чтобы кристаллизатор в паровых реформерах (на никелевой основе) не был отравлен.
Газ, использованный в восстановительной шахте, не поступает в оборотный цикл (по способу "ХиЛ-Ш" в оборотный цикл вводится лишь небольшая его часть), но используется для обогрева реформера (парового конвертера) и выработки пара. Чтобы получить высокий восстановительный потенциал газа после паровой конверсии, нужно поддерживать возможно более низкое отношение пар — углерод (способ "Армко"). Другой способ достижения той же цели заключается в обезвоживании конвертированного газа путем его охлаждения (для конденсации влаги) с последующим нагревом (способы "ХиЛ- I" и "ХиЛ- Ш").
По способу НСК (см. П.2. Рис. 3.) газ, полученный паровой конверсией, смешивается с циркулирующим колошниковым газом, причем благодаря конденсации влаги и отмывки от СО2 из колошникового газа получается высококачественный восстановительный газ.
В процессе "Мидрекс" (см. П.2. Рис. 4.) применен принцип конвертирования диоксидом углерода с рециркуляцией колошникового газа. Диоксид углерода, содержавшийся в колошниковом газе, вместе с его остаточной влагой (при промывке колошникового газа в скруббере водой в нем задается определенное содержание H2О) используются как кислородоносители для конверсии природного газа.
По всем способам рассматриваемой группы для оптимизации расхода энергии применяют более или менее глубокий теплообмен для утилизации отходящего тепла. Впрочем, при конверсии диоксидом углерода по способам этой группы можно получить самый низкий расход энергии [1].
В процессе "Пурофер" (см. П.2. Рис. 5.) для получения восстановительного газа из природного применён регенеративный принцип. Пока один из горизонтальных регенераторов нагревается за счет сжигания колошникового газа с добавкой природного до температуры ~ 1400 °С, во втором регенераторе происходит превращение смеси колошникового газа с природным в восстановительный газ. В расположенной далее камере охлаждения температуру восстановительного газа устанавливают на уровне 950 ± 10 °С. При таком крекинге природного газа при высокой температуре требуется лишь небольшая масса катализатора, нечувствительного к сернистым компонентам, содержащимся в природном или колошниковом газе.
В качестве варианта в процессе "Пурофер" предусмотрено получение восстановительного газа из такого углеродоносителя, как тяжелый мазут, который расщепляют путем частичного окисления (по способу "Тексако") и затем отмывают в скруббере от СО2 (монозтанол-амином), как и колошниковый газ, а после очистки подогревают в газоподогревателе до температуры восстановления.
По старейшему из процессов рассматриваемой группы "ХиЛ-I" (см. П.2. Рис. 1.) в восстановительном аппарате, как известно, применяют неподвижный слой. Шихту нагревают циклически в четырех ретортах и последовательно подвергают предварительному восстановлению, полному восстановлению, охлаждению и науглероживанию, затем материал выгружают и реторты наполняют новой порцией. Циклический процесс требует, кроме сравнительно большого расхода тепла, и значительные издержки на аппаратурную оснастку, что неблагоприятно сказывается на коэффициенте использования оборудования и эксплуатационных затратах. Поэтому фирма "Охалата и Ламина" с середины 70-х годов начала работать над созданием непрерывного процесса, который к концу 70-х годов получил известность как процесс "ХиЛ-Ш".
1.1.2 Выводы
Наибольшее развитие получили процессы "ХиЛ-I" и "Мидрекс". На их долю в сумме приходится более 80 % всех мощностей установок прямого восстановления в мире [1,16]. Двум этим процессам принадлежит соответственно наиболее высокая доля фактически выпускаемого губчатого железа.
По данным на 1990 г. на установках прямого восстановления, проекты которых будут реализованы в ближайшем будущем, предполагается осуществление процессов "ХиЛ-Ш", "Мидрекс" и НСК.
Анализ современного состояния бескоксовой металлургии в мире, тенденций и перспектив ее развития показывает, что возможно дальнейшее увеличение объема металлизованного сырья, особенно в регионах, обладающих ресурсами дешевых энергоносителей [1]. Основная часть (85 %) металлизованного продукта в мире производится по технологиям Мидрекс и ХИЛ-Ш. И хотя установки Мидрекс занимают лидирующее положение, технология ХИЛ в последние годы развивается быстрее.
В России эти технологии металлизации железорудных окатышей впервые были реализованы в установке ХИЛ-Ш на Лебединском ГОКе, производящей горячее брикетированное железо. А ещё раньше (1983 г.) пущены четыре установки металлизации по способу "Мидрекс" на Оскольском Эектрометаллургическом Комбинате (ОЭМК) [1].
Технологическое оборудование для процесса "Мидрекс" по сравнению с оборудованием для трех других конкурирующих процессов отличается простотой и высокой надежностью. Хотя работа ведется лишь с очень небольшим избыточным давлением в технологических циклах циркулирующего газа, удельная производительность в восстановительном реакторе, т.е. в шахтной печи, получается такой же или даже более высокой, чем при конкурирующих способах (см. П.1., П.2.). Кроме того, производственные показатели первой более крупной установки, которая начала работать на заводе в Контркёр, свидетельствовали о том, что возможности дальнейшего усовершенствования и повышения производительности процесса "Мидрекс" еще не исчерпаны.
Выбор процесса "Мидрекс" для рассмотрения в данной работе явился логическим следствием выше проведённого анализа. Все ссылки, ниже используемые данные и факты по процессу "Мидрекс" взяты из опыта ОЭМК.
1.2 ОПИСАНИЕ ЦЕХА МЕТАЛЛИЗАЦИИ
1.2.1 Модули прямого восстановления
В соответствии с полной мощностью ОЭМК мощность цеха металлизации была установлена равной 5 млн. т. металлизованного продукта в год. Мощность первого этапа первой очереди развития цеха металлизации была принята равной 1,667 млн. т губчатого железа в год, т.е. из 12 модулей, запроектированных для полного развития комбината, на первом этапе построены и работают в данный момент первые четыре [1].
В составе каждого модуля имеются: участок шахтной печи металлизации, участок реформера, система производства инертного газа, система аспирации.
Система водного хозяйства, свеча, помещение пульта с контрольно-измерительными приборами, а также электроснабжение выполнены общими для каждой пары модулей.
1.2.2 Печь металлизации
Восстановительная печь (см. Приложение 4) состоит из загрузочного (промежуточного) бункера, верхнего динамического затвора с загрузочным распределителем и загрузочными труботечками, зоны восстановления, промежуточной зоны, зоны охлаждения, огнеупорной футеровки, постоянно действующих питателей, нижнего динамического затвора и маятникового питателя (для выгрузки готового продукта).
1.2.3 Скруббер колошникового газа
В состав скруббера входят следующие узлы:
- труба Вентури, в которой колошниковый газ из шахтной печи, поступающий вертикально сверху вниз, интенсивно смачивается и охлаждается;
- насадка, в которой газ и вода движутся в противотоке через элементы насадки так, что газ охлаждается до температуры охлаждающей воды;
- зумпф, расположенный под насадкой, куда смывается смоченная пыль;
- циклонный каплеотделитель, в котором избыточная вода отделяется от чистого газа.
Компрессоры технологического и охлаждающего газа
Для повышения давления технологического и охлаждающего газов применены двухроторные винтовые компрессоры. Оси обоих роторов располагаются в корпусе параллельно. Вал ротора, не имеющего прямого привода, приводится во вращение через синхронизирующую зубчатую передачу так, что оба ротора вращаются без контакта между собой. Валы обоих роторов опираются на подшипники качения. В каждом компрессоре предусмотрена система циркуляционной масляной смазки под давлением.
1.2.4 Скруббер охлаждающего газа
По конструкции и принципу действия скруббер охлаждающего газа аналогичен скрубберу колошникового газа. В нем только нет разделительной стенки в насадке и второго циклонного каплеотделителя, поскольку поток очищенного охлаждающего газа подается на всасывание соответствующего компрессора без его разделения на две части.