Смекни!
smekni.com

Исследование возможности применения искусственных нейронных сетей для автоматического управления (стр. 4 из 21)

- увеличением содержания метана в охлаждающем газе, с тем чтобы заданное количество CH4 поступало в переходную зону и из нее - в зону восстановления.

В нижней части печи металлизации (ниже переходной зоны и вплоть до нижнего динамического затвора) происходит охлаждение металлизованного продукта.

Горячий запыленный колошниковый газ входит в скруббер сверху через трубу Вентури, где при подаче большого количества воды происходит резкое охлаждение газа и одновременно смачивание частиц пыли. Над поверхностью промывочной воды конусной части скруббера газ совершает поворот на 180°, вследствие чего смоченные частицы пыли вместе с большей частью капелек охлаждающей воды отбрасываются силой инерции в воду. При дальнейшем движении газа вверх через насадку скруббера он охлаждается почти до температуры охлаждающей воды. Доля газа, необходимая для реформинга (технологический газ), выходит из скруббера насыщенной водяными парами при температуре ~ 55 °С. Избыточный газ (топливный газ) должен быть возможно более полно обезвожен, поэтому он орошается в насадке скруббера промывочной водой, имеющей возможно более низкую температуру. При длительной непрерывной работе температура топливного газа может достичь 30°С. Чтобы можно было получить различные температуры газа, промывочная насадка скруббера разделена промежуточной перегородкой на зону технологического газа и зону топливного газа.

Нагретая и загрязненная пылью вода из труб Вентури и с насадки скруббера поступает в конус скруббера и оттуда передается далее в систему грязной воды. Содержание пыли в чистом газе при нормальной чистой насадке скруббера составляет в среднем ~ 5 мг/м3. Потеря напора в скруббере для промывки колошникового газа равна ~10 кПа.

Компрессоры технологического газа обеспечивают циркуляцию технологического газа, причем суммарная потеря напора в этом цикле при полной нагрузке и равномерном ходе печи составляет 12¸14 кПа и для поддержания заданного избыточного давления давление на стороне всасывания компрессоров обычно составляет 12 кПа. Для процесса "Мидрекс" хорошо зарекомендовали себя выносливые и почти не нуждающиеся в обслуживании винтовые (двухроторные) компрессоры. Это обусловлено, в первую очередь, их характеристикой (такие компрессоры относятся к гидрообъемному типу, т.е. нагнетаемый объем почти не зависит от колебаний давления), а также их нечувствительностью к высокому и меняющемуся содержанию свободной воды во всасываемом газе и хлопьям пыли, которые иногда захватываются газом. Компрессоры работают с впрыскиванием воды, которая поглощает тепло, образующееся при сжатии, и предотвращает появление образований на роторе. Они снабжены электроприводами с постоянной частотой вращения, поэтому для регулирования расхода газа предусмотрена байпасная линия, через которую избыточное количество газа возвращается из цикла технологического газа обратно в скруббер колошникового газа.

В концевом холодильнике технологический газ с заданной точностью насыщается водяными парами благодаря орошению насадки, через которую газ проходит снизу вверх. Температура воды устанавливается в соответствии с температурой газа, измеренной после холодильника.

Для процесса "Мидрекс" характерно получение восстановительного газа в реформере [1]. Термокаталитическая конверсия протекает по реакциям:

CH4 + H2O ® CO + 3H2 ;

CH4 + CO2® 2CO + 2H2 ;

При этом на катализаторе устанавливается равновесие реакции водяного газа:

CO+ H2O = CO2+ H2;

Для процесса "Мидрекс" типично, что в качестве кислородоносителя для конверсии, кроме (сравнительно небольших количеств) водяного пара, используется в первую очередь диоксид углерода - составная часть колошникового газа. Смешанный газ (природный + технологический) перед процессом конверсии подогревается (в рекуператоре) до температуры ~ 400 °С и затем конвертируется на никелевом катализаторе с одновременным нагревом до ~ 900 °С. При этом происходит увеличение объема. В скруббере колошникового газа избыточный газ выделяется из цикла технологического газа и используется как топливный. Теплота его сгорания используется для покрытия потребности в тепле эндотермических реакций конверсии.

При паровой конверсии обычные катализаторы реакции расщепления природного газа отличаются высокой чувствительностью к сере, в то время как при процессе "Мидрекс" допустимы и более высокие содержания серы в смешанном газе. Если заданное предельное содержание серы (например, ~0,0014% в природном газе) превышается лишь эпизодически и незначительно, то временное отравление катализатора (проявляющееся в снижении производительности) является обратимым и устранится самопроизвольно, если содержание серы в циркулирующем газе спустя короткое время вновь снизится до нормального уровня.

Обычными источниками поступления серы являются железная руда и природный газ. При использовании обожженных окисленных окатышей сера, содержащаяся в руде, становится безвредной, что соответствует условиям. Для очистки природного газа от серы предусмотрена установка десульфурации, описание которой в работе не приводится.

Процесс конверсии протекает в вертикальных реакционных трубах реформера, заполненных катализатором, газ через которые течет снизу вверх. Трубы расположены в футерованном газоплотном, стальном корпусе. Система подовых горелок, расположенных между трубами реформера, обеспечивает теплом эндотермический процесс. В главных горелках сжигается часть потока колошникового газа, к которому добавляется небольшое количество свежего природного газа.

В дополнение к описанной выше главной системе горелок отопления реформера имеется независимая вспомогательная система работающих на природном газе горелок, расположенных тоже между рядами труб в днище реформера. Вспомогательная система горелок рассчитана, так, чтобы реформер (газовый конвертор) можно было нагреть без нагрузки до заданной рабочей температуры и поддерживать во время перерывов в работе на этом уровне.

Поскольку в дымовом газе реформера при его нормальной работе содержание кислорода получается низким, он может быть использован для получения инертного газа.

Горячий конвертированный газ, выходящий из 288 труб реформера при температуре ~ 900 °С, поступает в два газосборных футерованных коллектора.

В холодильнике конвертированного газа и непосредственно за ним температура и состав газа корректируются с таким расчетом, чтобы были точно выдержаны конкретные параметры процесса восстановления.

Из трубопровода конвертированного газа ответвляется часть потока и охлаждается в противоточном оросительном охладителе (при этом содержание воды в упомянутом газе снижается). Температура основного потока регулируется количеством охлажденного конвертированного газа, вводимым в основной поток. Кроме того, можно повысить содержание метана (CH4) в конвертированном газе, добавляя природный газ в его холодную часть. В трубопроводе восстановительного газа установлены датчики температуры и содержания метана.

В рекуператоре охлаждается дымовой газ реформера, нагревая воздух, подводимый к главным горелкам, смешанный и природный газ. Дымовой газ последовательно проходит через радиационную и конвективную зоны воздухоподогревателя, затем через конвективный подогреватель смешанного газа и, наконец, через конвективный подогреватель природного газа и при этом охлаждается.

Холодный воздух разделяется для его подогрева между радиационной и конвективной зонами воздухоподогревателя. В радиационной зоне дымовые газы и воздух движутся в прямотоке, а все конвективные зоны в рекуператоре работают по перекрестно-противоточному принципу.

Утилизация тепла дымового газа позволяет снизить общий расход тепла на процесс и увеличить производительность реформера, так как благодаря предварительному подогреву смешанного газа в рекуператоре участок нагрева в трубах реформера до начала конверсии получается более коротким.

Применена система с двумя параллельными рекуператорами, из которых дымовые газы отсасываются двухпоточным эксгаустером и сбрасывается в дымоход дымовой трубы.

Даже когда главные горелки реформера не работают, в воздухоподогреватель можно подавать воздух, благодаря чему предотвращается перегрев рекуператоров и эксгаустера. Нагретый воздух сбрасывается в дымовую трубу.

1.3.3 Цикл охлаждающего газа

В зоне охлаждения печи металлизации горячий металлизованный продукт (имеющий температуру ~ 760 °С) отдает физическое тепло охлаждающему газу, который входит в эту зону с температурой ~ 40 °С. Здесь теплопередача тоже идет в противотоке, так как охлаждающий газ движется сверху вниз из распределителя в отводящие каналы, расположенные поперек шахты навстречу движущимся сверху вниз окатышам. Для обеспечения равномерного хода печи предусмотрено разрыхление материалов в печи на трех уровнях зубьями питателя, постоянно движущегося взад и вперед. Три верхних постоянно действующих питателя выполнены водо-охлаждаемыми, а два средних и нижний работают без охлаждения.

Охлажденный металлизованный продукт выходит из печи металлизации через нижний динамический затвор и далее через маятниковый питатель. Как и на участке загрузки шихтовых материалов, в печь металлизации к нижнему динамическому затвору постоянно подводится инертный газ.

При помощи маятникового питателя можно управлять производительностью печи металлизации.

Горячий запыленный охлаждающий газ с температурой 400¸450 °С поступает через отводящие каналы в скруббер, который по конструкции в принципе аналогичен скрубберу колошникового газа, но не имеет разделения на два газовых потока. Чистый газ (имеющий остаточную запыленность не более чем ~ 10 мг/м3) поступает в компрессор охлаждающего газа (такого же винтового типа, как компрессор технологического газа), который компенсирует потерю напора в цикле охлаждающего газа, составляющую ~ 40 кПа. Перед входом в печь металлизации охлаждающий газ в циклонном каплеотделителе освобождается от капель воды и далее через соответствующий распределитель подводится в зону охлаждения.