Расход добавляемого природного газа регулируется с таким расчетом, чтобы в восстановительном газе поддерживалось постоянное содержание метана.
8. Температура восстановления (в печи металлизации) должна устанавливаться, возможно, более высокой, в зависимости от производительности, степени использования газа, склонности металлизованных окатышей к вторичному окислению и их прочности. Однако, она ограничивается свойствами применяемых окисленных окатышей, в частности потому, что при некоторой температуре, специфической для данного вида окатышей, они спекаются в конгломерат, а в крайнем случае даже сплавляются. Допустимым верхним пределом температуры восстановления следует считать такую температуру, при которой появляются первые спекшиеся конгломераты металлизованных окатышей.
Температуру восстановительного газа регулируют путем ответвления от конвертированного газа, имеющего температуру ~ 900°С, части потока, охлаждения его до температуры насыщения вспрыскиванием воды и последующего подмешивания холодного газа к горячему с целью охлаждения его до требуемого температурного уровня. Величину охлаждаемого потока конвертированного газа регулируют при помощи заслонки после испарительного охладителя в зависимости от заданной температуры зоны восстановления.
9. Сжигание отопительного газа (смеси газов топливного колошникового и природного) в реформере должно происходить лишь с небольшим избытком воздуха. Кроме получения хорошего теплотехнического к.п.д. топки, это должно способствовать получению дымового газа, пригодного для последующей переработки на соответствующий инертный (затворный) газ.
Расход воздуха для горения следует устанавливать лишь с небольшим превышением стехиометрического соотношения (с коэффициентом расхода ~1,05). В соответствии с тем, что сжигается газ двух видов, расход так называемого первичного воздуха устанавливается в соотношении с расходом топливного колошникового газа, а расход так называемого вторичного воздуха в соотношении с расходом сжигаемого природного газа.
Вспомогательные горелки реформера, которые при нормальной работе выполняют лишь поддерживающую функцию, регулируются следующим образом: расход вспомогательного воздуха принимается в соотношении с расходом вспомогательного (добавляемого) природного газа. В соответствии с составами газов можно настроить соотношение газ - воздух на правильно заданное значение.
10. Давление в топочном (межтрубном) пространстве реформера должно поддерживаться на некотором постоянном уровне, во-первых, для того, чтобы обеспечить постоянство неизбежных подсосов атмосферного воздуха и, во-вторых, для защиты корпуса реформера и его конструктивных элементов.
Давление в топочном пространстве реформера определяется разрежением, создаваемым дымовым газом (тягой). По результатам измерения этого давления регулятор устанавливает правильное положение поворотных направляющих лопаток на всасывании вентилятора. Принимаются особые меры для того, чтобы при переходных рабочих состояниях во время пуска и выключения установки и при выходе горелок из строя получающиеся колебания давления укладывались в допустимые пределы.
11. Для защиты окружающей среды от загрязняющих газовых выбросов предусмотрена уже упоминавшаяся дымовая труба высотой 250 м. У основания дымовой трубы создается значительное разрежение, особенно при работе на холостом ходу. Чтобы защитить агрегат от недопустимо высокого разрежения, между эксгаустером и входом в дымовую трубу установлена дроссельная заслонка. Эта заслонка по результатам измерения давления непосредственно за эксгаустером регулирует предусмотренное давление.
12. Главным показателем работы модуля прямого восстановления является количество готового продукта (металлизованных окатышей), выгружаемого из печи металлизации. В качестве выгружающего устройства применен маятниковый питатель, в котором часть продукта сталкивается со стола вправо и влево при движениях толкателя. Выгруженное количество определяется числом ходов питателя за единицу времени. При нормальном ходе производственного процесса число ходов в час прямо пропорционально количеству выгруженных металлизованных окатышей.
Число ходов толкателя, имеющего гидравлический привод, регулируется на заданное значение по результатам определения выгруженного количества конвейерными весами. Управление числом ходов в минуту по результату измерения конвейерными весами возможно, но не является необходимым.
2. АКТУАЛЬНОСТЬ ИССЛЕДОВАНИЙ
2.1 АНАЛИТИЧЕСКИЙ ОБЗОР
2.1.1 Анализ темы дипломной работы
Тема дипломной работы отражает суть и предложения по разрешению вопросов, которые долгие годы не имели приемлемого решения, поскольку не было адекватных технологических методов [8,9]. На основании исследований предложено использовать методы искусственного интеллекта, в частности нейронные сети, что связано со стремительным развитием нейронных технологий в управлении за последнее десятилетие [3]. Благодаря этому и универсальности нейронных сетей появляется возможность автоматизировать многопараметрический и нелинейный процесс металлизации железа в шахтной печи при отсутствии формализованной модели.
Целью работы является исследование возможности применения искусственных нейронных сетей для автоматического управления процессом прямого восстановления железа в шахтной печи. Результатом исследований должна явиться нейросетевая модель автоматической системы управления процессом прямого восстановления железа, прогнозируемые результаты работы которой приемлемы относительно ручного управления оператором.
2.1.2 Обзор литературы
По тематике процесса восстановления количество литературных изданий позволяет в полной мере ознакомиться с методами и технологиями процесса прямого восстановления, а также определить необходимость автоматического управления [1,8,9,15,16,17].
Современный рынок литературных изданий, освещающих тематику интеллектуальных систем, достаточно широк и позволяет исследователю изучить основные методы и принципы и сформировать общую картину современного состояния разработок. При этом, крайне важным следует отметить скудную освещенность применения интеллектуальных систем управления на основе нейронных сетей в черной металлургии, в частности, в области решения задач автоматизации процессов прямого восстановления железа. Данный факт усложняет процесс исследования и разработки, но тем самым повышает научную и практическую значимость проводимой работы.
2.2 АКТУАЛЬНОСТЬ ПРОВОДИМЫХ ИССЛЕДОВАНИЙ
2.2.1 Исследование предметной области
Для исследования были выбраны модули прямого восстановления цеха ЦОиМ ОАО ОЭМК, использующие технологию фирмы "Мидрекс".
Пример Оскольского электрометаллургического комбината, построенного в СССР, продемонстрировал возможности промышленного получения высококачественного металла путем использования методов прямого восстановления железа в любых необходимых количествах [1]. При этом, только ряд экономических, технических и организационных просчетов, совершенных на этапах проектирования и строительства, не позволил ОЭМК стать в полной мере рентабельным производством. К сожалению, целый ряд неурядиц, связанных с износом оборудования, необходимостью разработки, изготовления и поставки оборудования, приборов, узлов, запасных частей взамен импортных преследовал комбинат и в последующем в процессе его эксплуатации. По этой причине возникала даже угроза остановки комбината. И, тем не менее, комбинат обеспечивал страну необходимым количеством высокосортного металла в полном объеме. В металлургической промышленности, так же, как и в других областях, к производительности установок, качеству продукции и гибкости при переналадке производственных процессов предъявляются все более высокие требования. Применение современного электротехнического оборудования и новейших автоматизированных систем с использованием средств вычислительной техники обеспечивает надежное и наглядное управление технологическим процессом, обширный контроль и диагностику неисправностей, высокую оперативную готовность агрегата и позволяет удовлетворить самым высоким требованиям к промышленному производству с одновременной экономией затрат [16].
2.2.2 Определение научного уровня
Предлагаемые методы автоматического управления процессом металлизации железа на основе нейронных технологий являются относительно новыми решениями для научной сферы [12,21,22]. Таким образом, данная тема относится к новому направлению развития нейронных технологий управления, что, несомненно, делает её актуальной как с точки зрения развития науки, так и с точки зрения практической полезности, вызванной, в первую очередь, спецификой исследуемой предметной области.
3. АВТОМАТИЗАЦИЯ УПРАВЛЕНИЯ
3.1 ХАРАКТЕРИСТИКА АВТОМАТИЗАЦИИ
3.1.1 Текущий уровень автоматизации
Для каждой из установок металлизации предусмотрен отдельный центральный пост управления процессом, расположенный в здании, где размещаются распредустройства. В помещениях КИПиА, кроме измерительных панелей с показывающими и самопишущими приборами, расположены шкафы с регуляторами, шкафы со вспомогательными электронными блоками, а также шкафы систем сигнализации и оповещения.
Все установки цеха, а также участок подвода и отвода энергетических сред оснащены большим количеством устройств измерения и регулирования, обеспечивающих поддержание на заданном уровне всех параметров процесса.