Для нагрева заготовок по-прежнему широко применяются кольцевые печи (ТПА 48-340, Италия), наряду с этим начинают использовать печи с шагающим подом (ТПА 27-127, Франция, ТПА 33-194, Япония) [2]. Во всех случаях высокая производительность современного агрегата обеспечивается путем установки одной печи большой, единичной мощности (производительность до 250 т/ч). Для подогрева труб перед редуцированием (калиброванием) применяют печи с шагающими балками.
Основным станом для получения гильз продолжает оставаться двухвалковый стан винтовой прокатки, конструкция которого совершенствуется, например, путем замены неподвижных линеек приводными направляющими дисками. В случае применения квадратных заготовок стану винтовой прокатки в технической линии предшествует либо прессвалковый стан (ТПА 48-340 в Италии, ТПА 33-194 в Японии), либо стан для калибровки граней и пресс для глубокой зацентровки (ТПА 60-245, Франция) [2].
Одним из основных направлений дальнейшего развития способа непрерывной прокатки является применение оправок, перемещающихся с регулируемой скоростью в процессе прокатки, взамен плавающих. С помощью специального механизма, развивающего усилие удерживания 1600-3500 кН, оправке задается определенная скорость (0,3-2,0 м/с), которая поддерживается либо до полного снятия трубы с оправки в процессе прокатки (удерживаемая оправка), либо до определенного момента, начиная с которого справка перемещается как плавающая (частично удерживаемая оправка). Каждый из этих способов может применяться в производстве труб определенного диаметра. Так, для труб малого диаметра основным является способ прокатки на плавающей оправке, среднего (до 200 мм) - на частично удерживаемой, большого (до 340 мм и более) - на удерживаемой.
Применение на непрерывных станах оправок, перемещающихся с регулируемой скоростью (удерживаемых, частично удерживаемых) взамен плавающих обеспечивает значительное расширение сортамента, увеличение длины труб и повышение их точности. Представляют интерес отдельные конструктивные решения; например, использование стержня прошивного стана в качестве частично удерживаемой оправки непрерывного стана (ТПА 27-127, Франция), внестановый ввод оправки в гильзу (ТПА 33-194, Япония) [3].
Новые агрегаты оснащаются современными редукционными и калибровочными станами, причем чаще всего используется один из этих станов. Охладительные столы рассчитаны на прием труб после редуцирования без предварительной разрезки.
Оценивая современное общее состояние автоматизации трубных станов, можно отметить следующие особенности.
Транспортные операции, связанные с перемещением проката и инструмента по агрегату, автоматизированы достаточно полно с помощью традиционных локальных (преимущественно бесконтактных) устройств автоматики. На основе таких устройств и стало возможным внедрение высокопроизводительных агрегатов с непрерывным и дискретно-непрерывным технологическим процессом.
Собственно же технологические процессы и даже отдельные операции на трубных станах автоматизированы пока явно недостаточно и в этой части их уровень автоматизации заметно уступает достигнутому, например, в области непрерывных листовых станов. Если применение управляющих вычислительных машин (УВМ) для листовых станов стало практически широко признанной нормой, то для трубных станов примеры пока единичны в России, хотя за рубежом в настоящее время разработка и внедрение АСУ ТП и АСУП стало нормой. Пока же на ряде трубных станов, в нашей стране имеются в основном примеры промышленной реализации отдельных подсистем автоматизированного управления технологическими процессами с помощью специализированных устройств, выполненных с использованием полупроводниковой логики и элементов вычислительной техники.
Отмеченное состояние обусловлено в основном двумя обстоятельствами. С одной стороны, до недавнего времени требования к качеству, и прежде всего, к стабильности размеров труб, удовлетворялись относительно простыми средствами (в частности, рациональными конструкциями оборудования станов). Эти условия не стимулировали более совершенные и, естественно, более сложные разработки, например, с использованием относительно дорогостоящих и не всегда достаточно надежных УВМ. С другой стороны, применение специальных нестандартных технических средств автоматизации оказывалось возможным лишь для более простых и менее эффективных задач, при этом требовались значительные затраты времени и средств на разработку и изготовление, что не способствовало прогрессу в рассматриваемой области.
Однако возрастающие современные требования к трубному производству, в том числе и к качеству труб, не могут быть удовлетворены традиционными решениями. Более того, как показывает практика, существенная доля усилий в удовлетворении этих требований приходится на автоматизацию, причем, в настоящее время необходимо в процессе прокатки труб автоматически изменять эти режимы.
Современные достижения в области управления электроприводами и различных технических средств автоматизации, прежде всего в области мини-ЭВМ и микропроцессорной техники, позволяют коренным образом совершенствовать автоматизацию трубных станов и агрегатов, преодолеть различные производственные и экономические ограничения.
Применение современных технических средств автоматизации предполагает одновременное повышение требований к корректности постановки задач и выбору путей их решения, и в частности - к выбору наиболее эффективных путей воздействия на технологические процессы Решению этой задачи может способствовать анализ существующих наиболее эффективных технических решений по автоматизации трубных станов.
Исследования непрерывных трубопрокатных агрегатов как объектов автоматизации показывают, что имеются существенные резервы дальнейшего повышенияих технико-экономических показателей за счет автоматизации технологического процесса прокатки труб на этих агрегатах.
При прокатке в непрерывном стане на длинной плавающей оправке также наводится концевая продольная разностенность. Толщина стенки задних концов черновых труб больше середины на 0,2-0,3 мм. Длина заднего конца с утолщенной стенкой равна 2-3 межклетевым промежуткам. Утолщение стенки сопровождается увеличением диаметра на участке, отстоящем на один межклетевой промежуток от заднего конца трубы. Вследствие переходных режимов толщина стенки передних концов на 0,05-0,1 мм меньше середины, При прокатке с натяжением стенки передних концов труб также утолщаются. Продольная разностенность черновых труб сохраняется при последующем редуцировании и приводит к увеличению длины задних отрезаемых утолщенных концов готовых труб.
При прокатке в редукционных растяжных станах происходит утолщение стенки концов труб вследствие снижения натяжений по сравнению с установившимся режимом, который наступает только при заполнении 3-4 клетей стана. Концы труб с утолщенной сверх допуска стенкой отрезаются, и связанные с этим отходы металла обусловливают основную долю общего расходного коэффициента на агрегате.
Общий характер продольной разностенности труб после непрерывного стана практически полностью переносится на готовые трубы. В этом убеждают результаты прокатки труб размерами 109 х 4,07 - 60 мм при пяти режимах натяжения на редукционном стане установки 30-102 ЮТЗ. В процессе эксперимента на каждом скоростном режиме отобрали по 10 труб, концевые участки которых резали на 10 частей длиной по 250 мм, а от середины вырезали по три патрубка, расположенные на расстоянии 10, 20 и 30 м от переднего торца. После замеров толщины стенки на приборе, расшифровки диаграмм разностенности и усреднение данных были построены графические зависимости, представлены на рис. 54 [13].
Таким образом, отмеченные составляющие общей разностенности труб оказывают существенное влияние на технико-экономические показатели работы непрерывных агрегатов, связаны с физическими особенностями процессов прокатки в непрерывном и редукционном станах и могут быть устранены или существенно снижены только за счет специальных автоматических систем, изменяющих настройку стана в процессе прокатки трубы. Закономерный характер этих составляющих разностенности позволяет использовать в основе таких систем программный принцип управления.
Известны другие технические решения задачи сокращения концевых отходов при редуцировании с помощью автоматических систем управления процессом прокатки труб в редукционном стане с индивидуальным приводом клетей (патенты ФРГ № 1602181 и Великобритании 1274698) [3]. За счет изменения скоростей валков при прокатке передних и задних концов труб создают дополнительные усилия натяжения, что приводит к снижению концевой продольной разностенности. Имеются сведения, что такие системы программной коррекции скоростей главных приводов редукционного стана работают на семи зарубежных трубопрокатных агрегатах, в том числе на двух агрегатах с непрерывными станами в Мюльгейме (ФРГ). Агрегаты поставлены фирмой "Маннесманн" (ФРГ).
Второй агрегат пущен в 1972 г. и включает 28-ми клетевой редукционный стан с индивидуальными приводами, оснащенный системой коррекции скоростей. Изменения скоростей при прохождении концов труб осуществляются в первых десяти клетях ступенчато, как добавки к рабочему значению скорости. Максимальное изменение скорости имеет место на клети №1, минимальное - на клети № 10. В качестве датчиков положения концов трубы в стане, дающих команды на изменение скорости, используются фотореле. В соответствии с принятой схемой коррекции скорости питание индивидуальных приводов первых десяти клетей осуществляется по противопараллельной реверсивной схеме, последующих клетей - по нереверсивной схеме. Отмечается, что коррекция скоростей приводов редукционного стана позволяет увеличить выход годного на агрегате на 2,5% при смешанной программе производства. С увеличением степени редуцирования по диаметру этот эффект возрастает.