Смекни!
smekni.com

Технологический процесс изготовления деталей в условиях серийного производства (стр. 1 из 5)

ГОУ СПО

Комсомольский-на-Амуре политехнический техникум

Технологический процесс изготовления деталей в условиях серийного производства

N=12000

Курсовой проект

Пояснительная записка

КПТМ.040107.000 ПЗ

преподаватель Кондрашина В.Б.

студент Макуха А.С.

2009


Содержание

Введение

1. Общий раздел

1.1 Характеристика конструкции детали

1.2 Анализ конструкции детали на технологичность

1.3 Химический состав и механические свойства материала

2. Технологический раздел

2.1 Выбор и характеристика типа производства

2.2 Технические требования, предъявляемые к детали. Методы их обеспечения и контроля

2.3 Выбор и обоснование метода получения заготовки

2.4 Выбор и обоснование технологических баз

2.5 Разработка маршрутного технологического процесса механической обработки детали

2.6 Расчет режимов резания и основного технологического времени на две разнохарактерные операции

2.7 Расчет норм времени на операции разработанные в пункте 2.6

Список использованных источников


Введение

Технология машиностроения является комплексной научной дисциплиной, без которой невозможно современное развитие производства. Изучение современных машин осуществляется на базе сложных технологических процессов, в ходе которых из исходных заготовок с использованием различных методов обработки, изготавливают детали и собирают различные машины и механизмы. При освоении новых изделий необходимо их отработать на технологичность, выбрать заготовки, методы их пооперационной обработки, оборудование и технологическую оснастку. При этом приходится решать множество других технологических задач: обеспечение точности, качества поверхностного слоя, экономичность и др.

Технический уровень любого производства в каждой отрасли определяется уровнем технологии. При этом важно понять, как эффективно изготавливать машины заданного качества в установленном количестве при наименьших затратах. Для проектирования оптимальных технологических процессов необходимы знания о технологических процессах, способах и методах обработки наиболее эффективно используемых в производственном процессе.

В связи с ускоряющимися темпами выпуска изделий и необходимостью обеспечения их конкурентоспособности требования к технологии машиностроения как науки резко возрастает. Однако при этом теория не должна отделятся от практики – как критерия истины.

Технология машиностроения является научной дисциплиной, опирающейся на производственный опыт. синтезирующий технологические проблемы изготовления машин заданного качества и количества в установленные сроки.


1. Общий раздел

1.1 Характеристика конструкции детали

Деталь шкворень предназначена для соединения ответственных деталей самолета. Относится к классу корпусов. Верхняя часть детали имеет глухое цилиндрическое отверстие Ø52. В этой же части между двумя точными наружными поверхностями Ø66f7 и Ø70f7 имеется коническое обнижение. Нижняя часть детали имеет сквозной паз размером 70Н9 и глубиной 70 мм, стенки которого имеют закругления R = 39мм, в которых просверлены сквозные отверстия Ø30Н8. К этим поверхностям предъявляются высокие требования по точности, т.к они соединяют ответственные детали

Верхнюю и нижнюю часть разделяет выступ треугольной формы (лепестки), который выполнен под углом с просверленными отверстиями Ø14Н8мм. В дне глухого отверстия Ø52мм просверлены четыре отверстия Ø7мм. Ниже выступа находятся ребра жесткости, в которых имеются восемь отверстий Ø6.2мм.

Точные наружные диаметры 66f7мм и 70f7мм получают шлифованием. Ширина паза 70Н9 также достигается путем шлифования. Точные сквозные отверстия в стенках паза Ø30Н8 получают на вертикально – сверлильном станке с окончательным развертыванием.

Марка материала, из которого сделан шкворень, титановый сплав ВТ3 – 1

Шероховатость поверхностей контролируется эталонами.

Неточные поверхности контролируются штангенциркулем ШЦ 1 – 125 – 01


1.2 Анализ конструкции детали на технологичность

Технологичность конструкции детали определяется по ГОСТ 14205 – 83 как совокупность определенных свойств определяющих её приспособленность к достоверным определением затрат на её производство. Для механической обработки резанием наиболее применима количественная оценка технологичности его показателям, характеризующим степень удовлетворения к технологичности. Для оценки конструкции детали на технологичность производится анализ её поверхностей, результат которого занесен в табл.1

Табл.1 – Анализ поверхностей детали

Наименование поверхностей Конструктивные элементы Шероховатость Квалитет точности
унифицированные неунифицированные
1 2 3 4 5
Наружная цилиндрическаяповерхность 2 2 10 7
Торец 2 2 25 14
Внутренняя поверхность Ø52 1 1 25 14
Отверстия Ø6.2 8 8 25 14
Отверстия Ø14 2 2 10 8
Отверстия Ø30 2 2 10 8
Отверстия Ø7 4 4 25 14
Паз 1 1 10 9
Ребра 3 25 14
Выступ 2 25 14
Фаски 2 х 45 20 20 25 14
Итого 47 42

Коэффициент унифицирования конструктивного элемента КУЭ, определяется по формуле:

КУЭ = QНЭ /QЭ, (1)


где QЭ – количество элементов

QУЭ – количество унифицированных элементов

QЭ = 47;

QНЭ = 47

КУЭ = 42/47 = 0.9

Т.к КУЭ = 0.9 > 0.6, то деталь по данному признаку технологична.

Коэффициент точности обработки КТЧ, определяется по формуле:

КТЧ = 1 – (1/АСР), (2)

где АСР – средний квалитет точности.

Средний квалитет точности определяется по формуле:

, (3)

где ni – число поверхностей детали, точность которых соответствует 1…19 квалитетам точности

АСР = (7∙2 + 8∙4 + 9∙1 + 14∙40)/47 = 13

КТЧ = 1 – (1/13) = 0.93

Т.к КТЧ = 0.93 > 0.8, то конструкция детали по данному признаку технологична.

Коэффициент шероховатости КШ, определяется по формуле:

КШ = 1/БСР, (4)

где БСР – средняя шероховатость поверхностей определяется в значении параметра RZ, мкм

БСР – определяется по формуле:

, (5)

где n1, n2, n3... ni – количество поверхностей имеющих шероховатость соответствующую данному числовому значению параметра RZ, мкм

БСР= (10∙7 + 25∙40)/47 = 22.8

КШ = 1/22.8 = 0.04

Все поверхности детали располагаются симметрично относительно вертикальной оси. Доступ режущего инструмента ограничен лишь к четырем отверстиям Ø7 на дне глухого отверстия Ø52. Конструкция детали обеспечивает удобное ее базирование. Жесткость детали достаточна и не ограничивает режимы резания. На основе проведенного качественного анализа можно считать, что деталь по конструкции технологична.

В целом конструкция детали удовлетворяет конструктивным показателям технологичности, как показывает количественный и качественный анализ конструкции.

1.3 Химический состав и механические свойства материала

Титан обладает замечательными свойствами; он легок (изделия из титана в 1.75 раза легче чем из стали), прочен; коррозионно-стоек во многих, агрессивных средах; обладает малой тепло- и электропроводностью; немагничен. Многие титановые сплавы по прочности превосходят легированные стали, алюминиевые и магниевые сплавы, так при 300 - 350°С титановые сплавы прочнее алюминиевых в 10 раз.

Этот комплекс свойств позволяет применять титан в разных отраслях народного хозяйства.

Титан пластичен и обрабатывается давлением, как в горячем, так и в холодном состояниях.

Сплав ВТ3 – 1 относится к группе двухфазных. При его закалке из β – области образуется игольчатая структура мартенситного типа, состоящая в основном из прекращающегося β – раствора – гексональной α΄ - фазы. В результате последовательного старения при 650° в течении двух часов он приобретает характерную «коррозионную» структуру, состоящую из смеси α΄ – α фаз.

При комнатной температуре механические свойства сплавов этой группы довольно высокие:

σВ = 105 – 115 кГ/мм2; δ = 10 – 12 %

Титан имеет плотность 0.0045

Температура плавления 1668°С

Температура кипения - 5100°С

Коэффициент линейного расширения – 8.2*10-6 см/см*град

Удельное электросопротивление – 50 – 56 кГ/мм2

Предел текучести σ0.2 = 45 – 50 кГ/мм2

Поперечное сужение Ψ = 55%

НВ = 100 – 140 кГ/мм2

Модуль нормальной упругости = 10500 кГ/мм2

Табл.2 – Химический состав сплава

Марка Al % Fe % Mo % Cr % Si %
ВТ3 – 1 5.5 – 7.0 0.2 – 0.7 2.0 – 3.0 0.8 – 2.3 0.15 – 0.40

2. Технологический раздел

2.1 Выбор и характеристика типа производства

Для задания условия обработки резанием детали шкворень назначаетсч серийный тип производства. Серийный тип производства характеризуется ограниченной номенклатурой обрабатываемых деталей. изготавливаемых периодически повторяющимися партиями, и сравнительно большим объемом выпуска. чем в единичном производстве.