Смекни!
smekni.com

Расчёт аэрофонтанной сушилки (стр. 1 из 7)

Министерство образования и науки

Российской Федерации

Федеральное агентство по образованию

Уральский государственный лесотехнический университет

Кафедра: Физико-химической технологии защиты биосферы

Дисциплина: Гидравлика и теплотехника

УСТАНОВКА СУШИЛЬНАЯ

Расчетно-пояснительная записка к курсовому проекту

УС – 01.00.13 РПЗ

Разработала

студентка ЗФ IV курса

специальности 280201

шифр 50410 Пасютина Д.Ю.

Руководитель проекта Юрьев Ю.Л.

Заведующий кафедрой Липунов И.Н.

Екатеринбург

2010

содержание

Введение. 4

1 Принципиальная схема, ее обоснование и описание. 6

2 РАСЧЕТ ОСНОВНЫХ АППАРАТОВ СУШИЛЬНОЙ УСТАНОВКИ.. 8

2.1 Расчет топки для сушильной установки. 8

2.2 Расчет аэрофонтанной сушилки. 14

2.2.1 Технологический расчет. 7

Материальный баланс. 7

Построение рабочей линии процесса сушки на J-х диаграмме. 7

Тепловой баланс. 7

2.2.2 Гидродинамический расчет. 7

Диаметр аэрофонтанной сушилки. 21

Гидравлическое сопротивление сушилки. 23

3 Расчет и выбор вспомогательного оборудования и коммуникации.. 24

3.1 Бункер-питатель. 24

3.2 Ленточный транспортер. 7

3.3 Винтовой транспортер. 7

3.4 Шлюзовой дозатор. 7

3.5 Шлюзовой затвор. 7

3.6 Газовая горелка. 7

3.7 Вентилятор подачи воздуха на горение. 31

3.8 Вентилятор-дымосос. 33

4 Технико-экономические показатели сушилки.. 7

Технологические показатели работы сушилки. 7

Энергетические показатели работы сушилки. 7

Список использованных источников.. 51


Введение

Сушка представляет собой процесс удаления влаги из твердых влажных материалов путем её испарения и отвода образующихся паров. Сушка является наиболее распространенным способом удаления влаги из твердых материалов и проводится двумя способами:

первый способ проводится путем непосредственного соприкосновения сушильного агента с высушиваемым материалом – конвективная сушка.

второй путем нагревания высушиваемого материала тем или иным теплоносителем через стенку, проводящую тепло – контактная сушка.

Сушка производится также путем нагревания высушиваемых материалов токами высокой частоты или инфракрасными лучами.

В особых случаях применяется сушка некоторых продуктов в замороженном состоянии при глубоком вакууме – сушка возгонкой.

По своей физической сущности сушка является сложным диффузионным процессом, скорость которого определяется скоростью диффузии влаги из глубины высушиваемого материала в окружающую среду.

Процесс сушки широко используется в химической технологии. Он часто является последней операцией на производстве, предшествующей выпуску готового продукта. При этом предварительное удаление влаги обычно осуществляется более дешевым механическим способом (например, фильтрованием), а окончательный – сушкой.

Аэрофонтанные сушилки используют для сушки измельченной древесины (опила, щепы) в комбинации с трубой-сушилкой и барабанной сушилкой. Основной частью аэрофонтанной сушилки является диффузор – полый сосуд в форме усеченного конуса, обращенный широкой частью вверх. Следствием конусности является интенсивная циркуляция материала, он поднимается, фонтанирует в центральной части конуса и опускается в ее периферийной части. Высушенные частицы, когда их скорость витания

становится меньше скорости газа в верхней части конуса, уносятся потоком газа пневмотранспортом в циклон для улавливания.

Исследования показали, что в циклонах эффективно продолжается сушка. Продолжительность сушки в аэрофонтанной сушилке значительно больше, чем в трубе-сушилке, и ее трудно регулировать. Кроме того, сушка протекает несколько неравномерно и возможен перегрев материала [9].

1 Принципиальная схема, ее обоснование и описание

Сушка является довольно дорогой операцией, потому что на испарение 1 кг влаги необходимо подвести 2100-2500 кДж тепла. Для сушки измельченной древесины используют сушильные установки непрерывного действия, в которых процесс сушки совмещается с перемещением материала.

Влажный материал из бункера-питателя БП шлюзовым дозатором ДШ подается в сушилку С. Сушильный агент – топочные газы, разбавленные воздухом, поступают в сушилку из топки Т. Продукт вместе с сушильным агентом отсасывается вентилятором-дымосом ВД в циклон-разгрузитель ЦР, где продукт частично отделяется от сушильного агента, доочистка отработанного теплоносителя осуществляется в циклоне-очистителе ЦО. Отработанный сушильный агент отсасывается вентилятором-дымососом ВД и выбрасывается в атмосферу через дымовую трубу ДТ. Вся схема работает под разряжением, для того чтобы избежать свищей теплоносителя. Продукт через шлюзовой затвор ЗШ подается в транспортер ТВ на следующую технологическую стадию.


Рисунок 1 – Схема сушильной установки: ТЛ – транспортер ленточный;

Т – топка; КС – камера смешения; С – сушилка; БП – бункер-питатель;

ДШ – дозатор шлюзовой; ЦР – циклон-разгрузитель; ЦО – циклон-очиститель; ЗШ – затвор шлюзовой; В – вентилятор; ВД – вентилятор-дымосос; ДТ – дымовая труба; ТВ – транспортер винтовой; З – задвижка;

Д – диафрагма

2 РАСЧЕТ ОСНОВНЫХ АППАРАТОВ СУШИЛЬНОЙ УСТАНОВКИ

2.1 Расчет топки для сушильной установки

Исходные данные:

Состав природного газа (Ямбургское месторождение) [1, таблица 45], масс. %:

93,2 CH4; 4,4 C2H6; 0,8 C3H8; 0,6 C4H10; 0,3 C5H12; 0,1 CO2; 0,8 N2.

Параметры наружного воздуха (Урал, Екатеринбург, пригород):

Температура t0=5°С

Относительная влажность φ0=70%

Барометрическое давление Р=750 мм.рт.ст.=0,100 МПа

Влагосодержание наружного воздуха при t0=5 °С; φ0=70 %:

х0=0,622∙φ0∙Рнас/(Р-φ0∙Рнас)=0,622·0,7·6,54/(750-0,7·6,54)=0,004 кг/кг,

где Рнас=6,54 мм.рт.ст. при t0=5°С [1, таблица 32] при Р=750 мм.рт.ст.

Теплосодержание наружного воздуха при t0=5 °С; x0=0,004 кг/кг:

J0=1,01∙t0+(2493+1,97∙t0)∙x0 =1,01·5+(2493+1,97·5)·0,004=15,061 кДж/кг.

Теплотворная способность сухого газообразного топлива:

500,3∙CH4+475,22∙С2Н6+463,29∙С3Н8+458,48∙С4Н10+453,45∙С5Н12+

+453,32∙С2Н2+465,43∙С2Н4+101,10∙СО+1203,76∙H2+153∙H2S=500,3·93,2+

+475,22·4,4+463,29·0,8+458,48·0,6+453,45·0,3=49500,683 кДж/кг.

+2500∙∑(0,09∙n)/(12∙m+n)+25∙Wр=49500,683+2500[(0,09·4)/(12·1+4)+ +(0,09·6)/(12·2+6)+(0,09·8)/(12·3+8)+(0,09·10)/(12·4+10)+(0,09·5)/(12·5+12)]+

+25·0=49719,135 кДж/кг.

Теоретическое количество абсолютно сухого воздуха, необходимого для сжигания 1 кг природного газа:

Lо = 0,02435∙СО+0,348∙Н2+0,0614∙Н2S+1,39∙∑[(m+n/4)/(12∙m+n)]∙CmHn-

-1,39∙O2=1,39∙{[(1+4/4)/(12·1+4)]·93,2+[(1+6/4)/(12·2+6)]·4,4+[(3+8/4)/(12·3+

+8)]·0,8+[(1+10/4)/(12·4+10)]·0,6+[(1+12/4)/(12·5+12)]·0,3}=16,969

кг воздуха/кг газа.

Масса сухого воздуха, подаваемого в топку для сжигания 1 кг природного газа:

m­­=αm∙Lо=1,2·16,969=20,363 кг воздуха/кг газа,

где αm=1,05-1,2 при сжигании газов.

Масса сухого газа, получаемого при сжигании 1 кг природного газа:

=1+Lm-∑[(0,09∙n)/(12∙m+n)]∙CmHn-0,01∙Wр=1+20,363-[(0,09·4)·93,2/(12·1+

+4)+(0,09·6)·4,4/(12·2+6)+(0,09·8)·0,8/(12·3+8)+(0,09·10)·0,6/(12·4+10)+

+(0,09·5)·0,3/(12·5+12)] =19,16 кг/кг при Wр=0.

Масса водяного пара, получаемого при сжигании 1 кг природного газа с избытком воздуха:

d′=∑[(0,09∙n)/(12∙m+n)]∙CmHn+L­m∙хо+0,01∙Wр=[(0,09·4)·93,2/(12·1+4)+ +(0,09·6)·4,4/(12·2+6)+(0,09·8)·0,8/(12·3+8)+(0,09·10)·0,6/(12·4+10)+

+(0,09·5)·0,3/(12·5+12)]+20,363·0,004+0,01·0=2,285 кг/кг.

Влагосодержание топочных газов:

хтг=x′=d′/

= 2,285/19,16 = 0,119 кг/кг.

Количество компонентов топочных газов, полученных при сжигании 1 кг природного газа:

lco2=0,01∙CO2+0,0157∙CO+∑[0,04/(12∙m+n)]∙CmHn=0,01·0,1+0,0157·0+ +[0,04/(12·1+4)]·93,2+[0,04/(12·2+6)]·4,4+[0,04/(12·3+8)]·0,8+[0,04/(12·4+