Смекни!
smekni.com

Механика вертолета (стр. 1 из 3)

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Кафедра «Летательные аппараты»

Курсовая работа

по курсу «Строительная механика»

Руководитель

__________________

«____»____________200г.

Автор работы

студент группы

__________________

«____»____________200г.

Работа защищена

с оценкой

__________________

«____»____________200г.


Содержание

1 Расчет подредукторной фермы вертолета

1.1 Геометрические параметры фермы

1.2 Расчетная схема фермы

1.3 Определение усилий в стержнях фермы

1.4 Проектировочный расчет стержней

2 Расчет кругового кольца при плоском изгибе

2.1 Уравновешивание кольца

2.2 Определение внутренних силовых факторов

2.3 Определение перемещений с помощью тригонометрических рядов

2.4 Определение размеров поперечного сечения шпангоута


1. Расчет подредукторной фермы вертолета

Определить усилия в стержнях подредукторной фермы вертолета (рисунок 1.1), оставшихся после разрушения передней левой опоры, при действии нагрузок:

Тх = 1кН; Тy = 10кН; Мр = 0.1кН∙м.

Рисунок 1.1 – Геометрия подредукторной фермы вертолета

1.1 Геометрические параметры фермы

Геометрические параметры фермы представлены в таблице 1.1.

Таблица 1.1 – Геометрические параметры фермы

Наименование Проекции, мм l, мм
lx, мм ly, мм lz, мм
315 750 905 1216.86 0.259 0.616 0.744
905 750 460 1262.19 0.717 0.594 0.364
815 525 300 1014.82 0.803 0.517 0.296
235 525 755 949.14 0.248 0.553 0.795

1.2 Расчетная схема фермы

Расчетная схема фермы представлена на рисунке 1.2.

Рисунок 1.2 – Расчетная схема подредукторной фермы вертолета

1.3 Определение усилий в стержнях фермы

Составляем для данной статически определимой стержневой системы 6 уравнений равновесия:

:

После подстановки значений косинусов углов и сокращения на меньший из коэффициентов при неизвестных усилиях получим:

. (1.1)

:

После преобразований получим:

. (1.2)

:

После преобразований получим:

. (1.3)

:

(1.4)

:

(1.5)

:

(1.6)

Из уравнений (1.1), (1.2), (1.3), (1.4), (1.5), (1.6) составим систему, которую решим с помощью вычислительного пакета MathCAD (приложение 1). Для упрощения счета в MathCAD примем:

;
;
;

;
;
.

После решения системы получим:

;

;

;

;

;

.

Представим полученные результаты на диаграмме (рисунок 1.3).

Рисунок 1.3 – Диаграмма усилий в стержнях подредукторной фермы вертолета

Как видно из диаграммы, все стержни, кроме стержня

, растянуты. Наиболее нагружены стержни
,
и
, менее нагружены стержни
,
и
. Поэтому в первую очередь будут разрушаться стержни
и
(силы, растягивающие их, почти одинаковы), а уже потом остальные.

1.4 Проектировочный расчет стержней

Проектировочный расчет проведем для самого нагруженного стержня –

. Выберем стержень круглого поперечного сечения. Найдем диаметр этого сечения, если стержень изготовлен из сплава В95 [2, с. 43], для которого с учетом коэффициента запаса по пределу текучести (
) допускаемые напряжения
.

Диаметр стержня вычисляется по формуле:

, мм; (1.7)

.

После округления до нормального линейного размера по ряду Ra 40 [5, с. 481] получим:

.

Для подредукторной фермы вертолета необходимо взять стержни круглого поперечного сечения диаметром d = 4.8мм, изготовленные из сплава В95.


2. Расчет кругового кольца при плоском изгибе

Предварительно уравновесив кольцо потоком касательных сил (рисунок 2.1), найти:

силовые факторы M, Q, N методом сопряжения участков кольца;

перемещения v и w методом разложения нагрузки в ряд;

построить эпюры M, Q, N, v, w;

определить форму деформированного кольца и размеры поперечного сечения шпангоута.

Рисунок 2.1 – Расчетная схема кольца,

,
,

2.1 Уравновешивание кольца

Для уравновешивания внешней погонной радиальной нагрузки

, равномерно распределенной в секторе
, определим значения коэффициентов в выражении для касательных погонных сил:

. (2.1)

При уравновешивании кольца целесообразно положительное направление для уравновешивающих касательных сил связывать с положительным направлением отсчета угла

, так как в этом случае не нужно помнить о том, соответствует или нет положительное направление сил
принятому для них положительному направлению при выводе дифференциальных уравнений изгиба кольца.