Смекни!
smekni.com

Исследование влияния технологических параметров на процессы низкотемпературной сепарации (стр. 2 из 9)

Уравнение имеет следующий вид:

, (17)

где R= 1.987 - универсальная газовая постоянная кал/(моль*К); Tr=T/Tc, Tbr=Tb/Tc - приведенные температуры, где Тс, Ть- критическая температура и нормальная температура кипения компонента, К; αс - находится по формуле [] из условия, что PVPr =1/Рс и Тr= Тbr.

(18)

h определяется уравнением:

, (19)

где ∆Нνb - теплота парообразования при нормальной температуре кипения, кал/моль. ∆Нνb определялось по уравнению Джиакалоне [7]:

(20)

где

принимается равным 1.

2.2.Переработка газового конденсата.

Простейшая общая схема переработки газового конденсата выглядит следующим образом:

Рисунок 1 – Простейшая общая схема переработки газового конденсата.

Сепарация газоконденсатной смеси на газ сепарации и нестабильный конденсат осуществляется непосредственно на промысле (также может осуществляться деэтанизация, т.е. выделение этана из конденсата), после чего нестабильный конденсат можно транспортировать по конденсатопроводу на завод, где осуществится стабилизация конденсата и выделение продуктов первичной переработки - различные марки бензина и дизельного топлива, ШФЛУ, сжиженные газы, мазут, газ стабилизации.

Промысловая сепарация конденсата может осуществляться различными способами, например - низкотемпературной сепарацией (НТС). Высокое начальное давление природного газа используется в этом случае для получения холода и выделения вследствие этого водяного и углеводородного конденсата из газа. Холод при высоких давлениях газа получают на специальных установках, называемых установками низкотемпературной сепарации. В установках НТС отрицательные температуры создаются в результате дросселирования (понижения давления) газа высокого давления. Помимо выделения газового конденсата с помощью НТС также можно использовать винтовые и турбинные детандеры, адсорбционные установки, а также холодильные машины.

3.Литературный обзор.

3.1. Совершенствование технологии и оборудования подготовки газа. При добыче и подготов­ке газа к транспорту в местах с параметрами возможного гидратообразования (давление, температура, состав газа) предусматривают подачу метанола повышенной концентрации. Метанол может подаваться как в скважину, коллектор, шлейфы, т. е. до ус­тановок подготовки газа, так и перед теплообменниками или в теплообменники охлаждения газа, перед расширяющими устройствами. Вместе с газом на установки его подготовки поступает и углеводородный конденсат, который смешивается с водным раствором ме­танола, образуя эмульсии, ко­торые необходимо разделять. Обычно эти эмульсии разделя­ют в гравитационных раздели­телях или в разделителях с применением тонкослойных модулей, в которых движущей силой является разность плот­ностей разделяемых жидкостей. При разнице плотностей менее 150 кг/м гравитацион­ный метод разделения стано­вится неэффективным. При наличии углеводородного га­зового конденсата повышен­ной плотности и значительно­го количества насыщенного водного раствора метанола повышенной концентрации плотности разделяемых жид­костей выравниваются и прак­тически не разделяются грави­тационным отстаиванием. Процесс разделения эмуль­сии (углеводородный конден­сат - водные растворы мета­нола) усугубляется при нали­чии: механических примесей, продуктов коррозии, нераство­римых и растворимых солей. Указанные условия и приме­си способствуют образованию стойких эмульсий. Эти явления наблюдаются при разде­лении углеводородного газо­вого конденсата и водного ра­створа метанола на установ­ках комплексной подготовки газа Заполярного месторождения (УКПГ-1), 000 «Ноябрь-скгаздобыча» и ПХГ.

Проведенные исследова­ния различных эмульсий (жидкие углеводороды - вод­ные растворы гликолей; жид­кие углеводороды - водные растворы спиртов) в присут­ствии газовой фазы - диок­сида углерода, примесей - продуктов коррозии углероди­стых сталей показали, что ука­занные смеси при определенных условиях образуют стой­кие эмульсии, которые не раз­деляются гравитационным способом по истечении 2 ч и более, а то и суток.

Стойкость эмульсии зави­сит от следующих условий:

· соотношения разделяемых жидких фаз (с выравниванием объемов фаз стойкость эмуль­сии повышается);

· вязкости разделяемых жид­ких фаз или их температуры (с повышением вязкости сплош­ной жидкой фазы или пониже­нием температуры стойкость эмульсии повышается);количества растворенного в эмульсии газа (с возрастани­ем количества растворенного в эмульсии газа стойкость ее увеличивается);

· количества механических примесей и их дисперсности (с увеличением количества меха­нических примесей и диспер­сности, т. е. с уменьшением размера частиц, стойкость эмульсии повышается);

· состава механических при­месей, их способности к ад­гезии к разделяемым жидким фазам.

Структура и матрица раз­деляемых стойких эмульсий (рис. 1) наглядно демонстри­руют некоторые варианты со­стояния дисперсных фаз - это обычно газовый пузырек, вок­руг которого расположены оболочки из разделяемых жид­костей, на которых за счет сил адгезии располагаются мелко­дисперсные частицы механи­ческих примесей.

Известны способы разделе­ния стойких эмульсий с помо­щью подогрева, в поле цент­робежных сил, с применением деэмульгаторов, коагуляторов, с помощью электрических по­лей, которые направлены на ре­шение частных задач, напри­мер на снижение вязкости ос­новного слоя смеси или на уве­личение движущей силы, т.е. разности плотностей, на увели­чение диаметра капель и т. д. Известен также микроволновый способ разрушения нефтяных эмульсий, продемонстрирован­ный на НПЗ Exxonmobil, г. Тор-ране, шт. Калифорния. В дан­ном способе эмульсии разру­шаются микроволнами с помо­щью преобразователя с ком­пьютерным управлением, при этом вырабатывается радиоча­стотная энергия, которая вво­дится в промежуточный слой, рециркулируемый через волно­вод. Способ основан на том, что микроволны, поглощаемые водой, возбуждают молекулы воды, усиливают их вращение и нагревают воду, заключен­ную в эмульсионной матрице. Предлагается комплексный способ разделения стойких эмульсий с применением тер­могенераторов, основанный на следующих принципах:

· уменьшении вязкости разде­ляемых сред;

· механическом разрушении матриц эмульсии с выделени­ем из них газовой фазы;

· предварительном разделе­нии жидких фаз в центробеж­ном поле;

· тонкой фильтрации жидкости от механических примесей;

· увеличении разности плотно­стей разделяемых сред путем отпарки одной из легких фаз водного раствора;

· использовании энергии дав­ления жидкости для ее нагрева.

Для эффективного разде­ления стойких эмульсий не решить комплекс вопросов:

· увеличить разность плотно­стей разделяемых сред;

· уменьшить вязкость по край­ней мере основной фазы, в которой находится дисперсная фаза;

· дегазировать путем нагрева смеси газ из матриц эмульсии;

· разрушить стойкую оболоч­ку из механических примесей в углеводородах (разрушить силы адгезии);

· разделить гравитационным способом оставшиеся углево­дороды и водный раствор (воду);

· утилизировать газ дегазации и пары легких углеводородов;

· утилизировать энергию дав­ления смеси;

· отделить механические (твер­дые) примеси от жидких фаз.

Для решения этой задачи ДОАО «ЦКБН» и 000 «Ямбург-газдобыча» предложена мно­гофункциональная технология и оборудование нагрева, раз­рушения, разделения стойкой эмульсии с одновременной ее фильтрацией от примесей. Эта технология разделения осно­вана на гидродинамическом нагреве смеси жидкости, предварительном разделении жидкостей, в том числе в цен­тробежном поле, разрушении стойкой эмульсии ударным методом с одновременной ее фильтрацией (рис. 2).

Процесс осуществляется следующим образом. Сырой газ из скважин по шлейфам в присутствии жидких углево­дородов, водометанольного раствора, солей и примесей подают на первичную сепара­цию в сепаратор 1. Отсепарированную жидкость после дросселирования подают в дегазатор 2, из которого газ выветривания отводят на соб­ственные нужды, а жидкую эмульсию (углеводородный конденсат и водный раствор метанола) подают в фазный разделитель 3. В разделите­ле смесь нагревают через стенку или прямым смешени­ем до температуры испарения метанола теплоносителем, рециркулирующим по линиям 4 и 5 через теплогенератор 6 и (или) по линиям 7, 8, при этом наиболее эффективным является метод нагрева эмульсии с использованием тепла, снимаемого теплоно­сителем с верха регенерато­ра метанола 10. При нагреве отпаривают метанол и произ­водят процесс разрушения стойкой эмульсии, при этом выделяют из глобул смеси жидкости газ, отделяют меха­нические примеси и увеличи­вают движущую силу разделе­ния углеводородного конден­сата и водного раствора ме­танола, так как плотность пос­леднего с увеличением коли­чества отпариваемого мета­нола увеличивается и факти­чески происходит разделение фаз: углеводородный конден­сат - вода, углеводородный конденсат - механические примеси. Разделенный кон­денсат отводится в качестве продукта, вода с примесями метанола подается в качестве сырья в регенератор метано­ла 10, механические приме­си выводятся из разделите­ля 3. На схеме (см. рис. 2) также показаны линия мета­нола 9, линия углеводород­ного абсорбента 11 и блок осушки газа/2.