Смекни!
smekni.com

Исследование влияния технологических параметров на процессы низкотемпературной сепарации (стр. 3 из 9)

В качестве основного тех­нологического аппарата по представленной схеме предла­гается использовать теплоге­нератор, совмещенный с фаз­ным разделителем. Теплогене­ратор прошел стендовые испы­тания для нагрева сред: воды, водных растворов гликолей. Схема испытательного стенда включает насос, соединенный с теплогенератором, снабженным разгонным и тормозным цент­робежным устройством, фильтр тонкой очистки (≥ 1 мкм), раз­делительную емкость.

При рециркуляции смеси за счет периодического разгона и торможения жидкости происходит ее нагрев с умень­шением вязкости и выделе­нием газовой фазы, которая собирается по оси закручен­ного потока. При вращении жидкости происходит одно­временно разделение эмуль­сии в центробежном поле на углеводородную и водную фазы. После разгона жидко­сти при ударном торможении происходит разрушение мат­риц (глобул) стойкой эмуль­сии с выделением раствори­мого газа.

С испарением при нагре­ве легких фракций (метано­ла) разность плотностей меж­ду жидкими углеводородами и водным раствором увели­чивается (Ар > 150 кг/мЗ ) , что позволяет разделить их обычным гравитационным способом. На стенде был осу­ществлен вариант фильтра­ции части жидкости через металлокерамический самоочи­щающийся фильтр для отде­ления и отвода механических примесей.

Рис. 1. Структура и матрица разде­ляемых стойких эмульсий:

1 - легкая жидкая фаза; 2 -промежуточная фаза; 3 - тяже­лая жидкая фаза;

4 - углево­дородная оболочка; 5 - газо­вая фаза; 6 - водная оболочка;

7 - механические примеси.

Рис. 2. Технологическая схема подготовки углеводородного газа.

3.2. Перспективные технологии глубокой промысловой переработки природного газа.

Глубокая промысловая переработка природного газа связана решением много­образных проблем стабилизации, сероочистки и осушки газа перед подачей в магистральный трубопровод. Далеко не последнюю роль при этом играют вопросы экологически безопасной утилизации сернистых соединений. Это целый комплекс технических вопросов, которые могут быть решены только применительно к конкретному составу сырья. В связно этим в 000 «Оренбурггазпром» были пред­приняты попытки исследовать возможность комплексной обработки газа с ути­лизацией серосодержащих соединений непосредственно на промысловых установках с использованием абсорбционных и каталитических методов.

Особенностью технологии промыс­ловой очистки и переработки сме­шанного сырья малых газоконденсатных и нефтяных месторождений явля­ется необходимость одновременного и высокоэкономичного решения целого ряда технологических задач:

· разработки условий эффективной низ­котемпературной сепарации газа;

· обеспечения глубокой сероочистки и эффективной осушки газового сырья;

· утилизации серосодержащих соедине­ний и регенерации поглотителей;

· стабилизации конденсата и нефти.

При всем многообразии существующих подходов определяющими фактора­ми являются глубина залегания продук­тивных пластов, давление на устье сква­жины, а также концентрация сероводо­рода и меркаптанов в сырьевом потоке. Последний параметр позволяет класси­фицировать большинство потенциальных сырьевых источников как высоко - и среднесернистые.

Изучение свойств комбинированных абсорбентов, выбор состава абсорбента и исследования влияния термодинами­ческих параметров на степень извлече­ния кислых компонентов проводились на лабораторной, а затем пилотной ус­тановках [1]. Целью такого рода иссле­дований было создание эффективной и компактной технологии глубокой очис­тки газа.

Результаты экспериментальных иссле­дований далее были взяты за основу для расчета абсорбера производительностью 500 т/ч для решения проблем как глу­бокой сероочистки, так и обезвоживания и демеркаптанизации с использовани­ем маловодного комплексного абсорбен­та типа Укарсол, включающего в себя третичный амин МДЭА, метиловые эфиры ПЭГ и массовую долю воды с блока ре­генерации 5-8 %. Использование МДЭА в составе такого рода композиций свя­зано с низкой вязкостью третичного ами­на и необходимостью глубокой хемосорбции сероводорода. Это тем более ак­туально для получения кислого газа за­данного состава, если речь идет о пе­реработке сырого газа с повышенным содержанием диоксида углерода. Напро­тив, метиловые эфиры ПЭГ находят весь­ма широкое применение в качестве фи­зического поглотителя меркаптанов.

Комплексный абсорбент, эффектив­ность которого подробно оценена ниже.

представлен двумя граничными соста­вами (массовая доля, %):

1) 37% МДЭА + 57 % ДМПЭГ + 6 % Н2О;

2) 64 % МДЭА + 28 % ДМПЭГ + 8 % Н2О.

Оба варианта были использованы для глубокой очистки сырья, имеющего состав (объемная доля, %), вполне тради­ционный для газа нефтяных оторочек и малых газоконденсатных месторождений: СОз - 0,229; H2S - 0,841; С1 - 91,902; С2 - 2,213; С3 ~ 0,598; С4 - 0,068; N2 -3,871; i-С4 - 0,136; i-C5 - 0,048; С5- 0,048; С6 - 0,028; С7 - 0,007; C8 - 0,001; COS -0,0005; i-C2H5SH - 0,002; i-C3H7SH - 0,003; i-C4H9SH - 0,0002; CH3SH - 0,004.

Также оценивались различия в пере­работке сырья на абсорбентах (1,2) как для низконапорного (р = 3 МПа), так и для высоконапорного (р = 6 МПа) газа.

Глубина очистки исходного газа от сероводорода при кратности орошения примерно 0,1 моль/моль (табл. 1) нахо­дится в пределах 75-95 %. Из получен­ных данных следует, что хемосорбция сероводорода третичным амином в вы­соковязких средах находится в диффу­зионной области и незначительно зави­сит от доли МДЭА в абсорбенте. Поэто­му глубина очистки значительно увели­чивается (на 20-30 %) благодаря повы­шению уровня физической растворимо­сти при переходе с низконапорного газа на высоконапорный.

Повышение эффективности массообмена может быть также достигнуто уве­личением количества подаваемого аб­сорбента. Именно это подтвердила оп­тимизация модели абсорбера на очис­тку сырого газа от сероводорода до уровня европейских стандартов (менее 7 мг/мЗ ) , которая требует организации в аппарате кратности орошения более 0,5 моль/моль.

Глубина очистки исходного газа от меркаптанов при кратности орошения около 0,1 моль/моль составила в боль­шинстве случаев (табл. 2) более 90 %, что свидетельствует о хорошей растворимо­сти тиолов в метиловых эфирах МЭГ. При этом по содержанию меркаптанов уда­лось выйти на уровень европейских стан­дартов (менее 16 мг/м3) как для высо­ко-, так и для низконапорного газа.

Глубина очистки исходного газа от диоксида углерода при кратности оро­шения примерно 0,1 моль/моль приве­дена в табл. 3. При использовании тре­тичного амина полученные данные ил­люстрируют только зависимость глуби­ны очистки от интенсивности физичес­кого растворения СО2 в абсорбенте при различных давлениях.

В табл. 4 приведены данные о раство­римости углеводородов в насыщенном абсорбенте. Для рассмотренных составов она довольно велика (от 0,4 до 0,03 %) и почти линейно зависит как от доли ме­тиловых эфиров ПЭГ, так и от давления. Примерно 90-95 % поглощенного газа приходится на метан, что соответствует его доле в составе сырого газа и пред­полагает решение технических проблем дегазации насыщенного абсорбента в экспанзерной емкости.

Дополнительный и серьезный недо­статок эфиров ПЭГ в качестве компонентов маловодных комплексных абсор­бентов - их значительные потери с очищенным газом. Так, для диметиловых эфиров этилен- и диэтиленгликоля объемная доля этих компонентов в по­токе очищенного газа составляет от 0,25 до 0,4 %. Указанный показатель зави­сит прямо пропорционально от доли эфиров в абсорбенте и обратно пропор­ционально от давления в аппарате. Поэтому разработчики технологии Укарсол вынуждены были перейти на более тяжелые и одновременно более вязкие диметиловые эфиры три-, тетра- и пентаэтиленгликоля.

Подобных недостатков лишены компо­зиции, в которых эфиры ПЭГ частично или полностью заменены спиртосодержащими составами на основе этиленгликоля или метанола. Данные об испытании таких составов на пилотных стендах и моделировании абсорбера для очистки газа с их использованием свидетельствуют:

· растворимость углеводородов в насы­щенном абсорбенте падает более чем на порядок, значительно облегчая их после­дующее отделение;

· унос компонентов абсорбента с очи­щенным газом понижается на 1,5-2,0 по­рядка за счет образования устойчивых ас­социативных связей гидроксильных и аминогрупп;

· резко увеличиваются водопоглощающие свойства спиртосодержащих абсор­бентов в сравнении с диметиловыми эфирами ПЭГ.

Содержание воды в газе, очищенном составами 1, 2, приведено в табл. 5 с указанием соответствующей темпера­туры точки росы по влаге. Для сравне­ния приведены аналогичные данные для изученного нами состава [1] с массо­вой долей воды 4 %.

Как видно из этой таблицы, содержа­ние влаги в газе, прошедшем перера­ботку абсорбентами 1, 2 на основе ме­тиловых эфиров ПЭГ, довольно велико благодаря влагопоглотительным свой­ствам эфиров и поэтому требует допол­нительной стадии осушки перед пода­чей в магистральные трубопроводы. Тог­да как модифицированный поглотитель [1] может быть успешно использован для очистки и осушки газа с прямой пода­чей в магистральный трубопровод в летний период. Незначительная доосушка зимой позволит снизить влагосодержание газа с 0,0788 до 0,045 г/м3 и получить точку росы -15 0С.