Смекни!
smekni.com

Исследование влияния технологических параметров на процессы низкотемпературной сепарации (стр. 4 из 9)

Одним из перспективных направлений переработки кислых газов регенерации абсорбента в условиях промысловой очистки является каталитическое окисление сероводорода в элементарную серу .

Краткое описание. Суть метода зак­лючается в проведении реакции непол­ного окисления сероводорода (реакция Клауса)

H2S + 0,502 (l/n) Sn + НзО

на специальном катализаторе в таком ре­жиме, чтобы свести к минимуму побочную реакцию окисления сероводорода до диоксида серы:

H2S + 1,5 02 S02 + Н2О.

Установка состоит из каталитическо­го реактора 2 (рисунок), в который по­дается предварительно подогретая до температуры 200 0С смесь кислый газ - воздух. Выходная температура не дол­жна превышать 350 0С, так как это приводит к резкому снижению селективно­сти и степени конверсии процесса. Ре­гулировка температуры осуществляется дозированной подачей воздуха на вход в каталитический реактор.

Эффективность. В случае соблюде­ния условий высокой селективности ка­тализатора процесс может обеспечивать степень конверсии 80 - 90 % и выше. Это объясняется отсутствием термодинами­ческих ограничений на процесс.

Область применения. Процесс ис­пользуется для одноступенчатой пере­работки кислого газа в серу с концент­рацией сероводорода до 5 %. Разновидность данного процесса в сочетании с прямым Клаус - процессом, известная под названием СуперКлаус, применя­ется для увеличения степени конверсии сероводорода.

Промышленные установки. В насто­ящее время в мире эксплуатируется бо­лее десятка установок по переработке кислого газа методом прямого окисле­ния сероводорода; в том числе одна - в СНГ (Узбекистан).

Абсорбент

t, 0С

р, МПа

Объемная доля H2S

Глубина очистки, %

в сыром газе в очищенном газе

1

40

3

0.841

0.1134

86.51

40

6

0.841

0.0541

93.57

2

40

3

0.841

0.2060

75.51

40

6

0.841

0.0723

91.41

Таблица 1

Абсорбент

t, 0С

р, МПа

Объемная доля RSH

Глубина очистки, %

Содержание RSH в очищенном газе , мг/м3

в сыром газе в очищенном газе

1

40

3

0.009

0.00036

95.99

7.8

40

6

0.009

0.00026

97.09

5,7

2

40

3

0.009

0.00106

88.17

24.0

40

6

0.009

0.00069

92.30

15.9

Таблица 2

Абсорбент

t, 0С

р, Мпа

Объемная доля H2S

Глубина очистки, %

Молярная доля СО2 в очищенном газе, %

Глубина очистки %

в сыром газе

1

40

3

0.229

86.51

0.1295

43.33

40

6

0.229

93.57

0.108

52.58

2

40

3

0.229

75.51

0.1471

35.64

40

6

0.229

91.41

0.1157

49.40

Таблица 3

Абсорбент

t, 0С

р, Мпа

Массовая доля алканов в насыщенном абсорбенте, %

1

40

3

0.231

40

6

0.404

2

40

3

0.029

40

6

0.056

Таблица 4

Абсорбент

t, 0С

р, Мпа

Объемная доля H2О в очищенном газе, г/м

Объемная доля H2О в очищенном газе, %

Точка росы, 0С

1

40

3

0.426

0.053

12

40

6

0.185

0.023

7

2

40

3

0.455

0.057

13

40

6

0.225

0.028

9

[1]

40

6

0.0788

0.010

-8

Таблица 5

3.3. Повышение эффективности переработки газового сырья.

Реализация разработанного проекта позволит улучшить экономические показатели переработки углеводородного сырья и расширить ассортимент выпускае­мой продукции, поскольку развитие газохимических производств является од­ной из стратегических задач 000 «Газпром добыча Оренбург». Рост доли про­дукции высокой степени переработки - это ватная составляющая устойчивого экономического развития Оренбургского комплекса.

Установка У-335 газоперерабатыва­ющего завода (ГПЗ) предназначена для щелочной очистки пропан-бутановой фракции (СПБТ), вырабатывае­мой на установках аминовой очистки природного газа (1, 2, ЗУ-370), от сер­нистых соединений. Проектная мощность установки по сырью - 100 т/ч.

Индивидуальный состав сернистых соединений, содержащихся в СПБТ (в ppm), приведен ниже (данные испыта­тельного центра ОАО «ВНИИУС»).

Серооксид углерода 3

Сероводород 6

Метилмеркаптан 8000

Этилмеркаптан 1650

Изопропилмеркаптан 40

Основную часть вредных примесей составляют метил- и этилмеркаптан.

Принципиальная технологическая схе­ма У-335 приведена на рис. 3.

Очистка СПБТ проводится в четыре ступени: три последовательно работаю­щие ступени - 10%-м раствором щело­чи NaOH , с последующей отмывкой от щелочи водой на 4-й ступени. Процесс основан на способности серосодержа­щих соединений (меркаптаны, сероводо­род) вступать в реакцию со щелочью с образованием растворимых в воде и нерастворимых в углеводородах соединений.

Каждая ступень очистки состоит из контактора - смесителя, разделителя и циркуляционного насоса. Контакторы смесители U-образные, тарельчатого типа. На 1, 2 и 3-й ступенях по четыре контактора-смесителя. На 4-й ступени - два контактора-смесителя.

Очищенная от сероводорода и меркап­танов СПБТ после водной промывки от щелочи из разделителя В-03 направля­ется на осушку в один из работающих в режиме осушки адсорберов, загруженных цеолитом NaA. Проходящая снизу вверх через адсорбер пропан-бутановая фрак­ция освобождается от воды и по коллектору направляется в товарный парк.

Первоначальной проектной схемой был предусмотрен физический способ восстановления свойств отработанного щелочного раствора .

Этот способ основывался на терми­ческой регенерации раствора щелочи и отличался повышенным расходом водя­ного пара, электроэнергии и топливно­го газа. Кроме того, образующиеся при регенерации щелочного раствора легкие меркаптаны вызывали значительную кор­розию оборудования.

Улучшить первоначальное проектное решение (блока регенерации отработан­ного щелочного раствора) удалось бла­годаря внедрению процесса «ВНИИУС-12», испытанного и внедренного на раз­личных промышленных установках демеркаптанизации углеводородного сырья.