Смекни!
smekni.com

Исследование влияния технологических параметров на процессы низкотемпературной сепарации (стр. 5 из 9)

Проведенная реконструкция установки позволила улучшить степень очистки

СПБТ и исключить сжигание меркапта­нов в печах дожига, при этом суммар­ное снижение выбросов диоксида серы составило 6 тыс. т ежегодно.

В качестве побочного процесса очи­стки получалось так называемое дисульфидное масло, представляющее собой смесь дисульфидов. Массовый состав дисульфидного масла (в %), получаемого на У-335, приведен ниже.

Углеводороды 55

Дисульфиды.... 44,8

В том числе:

диметилдисульфид 21

метилзтилдисульфид 18

диэтилдисульфид 4,2

прочие дисульфиды 1,6

Проектом не предусматривалось вы­деление дисульфидного масла с дове­дением до товарной формы. В связи с этим данный продукт закачивали в по­ток стабилизированного конденсата для последующей транспортировки по тру­бопроводам в ОАО «Салаватнефтеоргсинтез». Однако, как показали исследова­ния, дисульфидное масло может найти квалифицированное использование в нефтехимии и нефтепереработке. Кро­ме того, оно является сырьем для выде­ления из него другого ценного продук­та - диметилдисульфида.

В России дисульфидное масло про­изводится только на Уфимском НПЗ в качестве побочного продукта при очис­тке нефтепродуктов и используется на указанном предприятии в качестве ин­гибитора коксообразования в процессе пиролиза углеводородного сырья. Диметилдисульфид в России не производится, а потребности в нем удовлетворяются исключительно за счет импорта.

Производимый на У-335 продукт (ди­сульфидное масло) не мог быть исполь­зован потребителями в получаемой фор­ме, так как не соответствовал требова­ниям по ряду важных показателей, таких, как содержание тяжелых металлов, угле­водородов, давление насыщенных паров.

Специалистами ГПЗ совместно с ОАО «ВНИИУС» было проведено обследова­ние технологического процесса и пред­ложен ряд эффективных технических и технологических решений. После их ре­ализации на ГПЗ на существующем оборудовании была наработана опытная партия дисульфидного масла, требуемого потенциальными потребителями каче­ства. Массовый состав (в %) дисульфид­ного масла установки У-335 (после мо­дернизации процесса) приведен ниже.

Углеводороды менее 0,01

Дисульфиды 99,8

В том числе:

диметилдисульфид 70,8

метилзтилдисульфид 25,6

диэтилдисульфид 2,8

прочие дисульфиды 0,6

Данная партия была отправлена неф­техимическому комбинату «Сибур-Нефтехим» (г. Кстово) для проведения опыт­но-промышленных испытаний в качестве ингибитора коксообразования.

Первый этап испытаний, проходивших при участии 000 «ВНИИОС» (г. Москва), продемонстрировал перспективность использования дисульфидного масла в качестве ингибитора коксообразования. В настоящее время на комбинате ведется внедрение рекомендаций института по результатам первого этапа опытно-про­мышленных испытаний. В дальнейшем испытания планируется продолжить.

Предварительные исследования россий­ского рынка потребления диметилдисульфида продемонстрировали заинтересован­ность и ряда других нефтехимических пред­приятий в переводе своих пиролизных ус­тановок с импортного диметилдисульфида на дисульфидное масло производства 000 «Газпром добыча Оренбург».

Ориентировочный годовой объем по­требления диметилдисульфида в России составляет около 800 т в качестве сульфидирующего агента на нефтеперераба­тывающих заводах и около 600 т в каче­стве ингибитора коксообразования на нефтехимических предприятиях (на ус­тановках пиролиза).

С целью оценки целесообразности производства дисульфидного масла 000 «Газпром добыча Оренбург» подготовлен инвестиционный замысел, в котором про­работано несколько потенциально эффек­тивных путей использования дисульфидного масла (кроме использования в ка­честве ингибитора коксообразования и сульфидирующего агента).

В результате проведенных исследо­ваний установлено, что диалкилдисульфиды обладают достаточно высокой ра­створяющей способностью по отноше­нию к элементарной сере. Доступность и высокая сероемкость диалкилдисульфидов позволяют также использовать их в качестве эффективного раствори­теля для удаления отложений элемен­тарной серы из газовых скважин, ком­муникаций и технологического обору­дования при добыче и промысловой об­работке высокосернистого природно­го газа.

Также дисульфидное масло может являться ценным сырьем для синтеза высоколиквидных сераорганических со­единений, имеющих широкое использо­вание в различных областях хозяйства. Проведенный анализ экономических показателей данного проекта (срок оку­паемости, внутренняя норма доходнос­ти, чистый дисконтированный доход) по­казал его высокую экономическую эф­фективность при незначительных капи­тальных вложениях.

С целью практической реализации проекта:

· разработан регламент на проекти­рование, исполнитель - ОАО «ВНИИУС» (г. Казань);

· разработан пакет необходимой документации на продукт (технические условия, паспорт безопасности), испол­нитель - ОАО «ВНИИУС» (г. Казань).

В перспективе планируется приступить к разработке проектной документации и строительно-монтажным работам.

Рис.3 Принципиальная технологическая схема У-335

3.4. Сверхзвуковая сепарация в технологии переработки газового углеводородного сырья.

Для подготовки газа, добываемого на газовых или нефтяных месторождениях, к дальнейшей транспортировке потребителям используются традиционные способы, заключающиеся в из­влечении тяжелых углеводородов. К ним отно­сятся:

· абсорбционное извлечение;

· адсорбция на твердых поглотителях;

· низкотемпературная конденсация (НТК).

Первый способ — один из старейших (с 1913 г.). В качестве абсорбента в нем исполь­зуют керосиновую или дизельную фракции. Производственники называют ее «маслом», и поэтому установки получили название маслоабсорбционных.

НТК — основной способ выделения углево­дородов, заключаюпдийся в конденсации угле­водородов при понижении температуры за счет дросселирования газа (эффект Джоуля-Томсона) или его расширения в турбодетандере (изоэнтропийный процесс). Для достижения более низких температур (-70°С) используется искусственное охлаждение пропаном.

Низкотемпературная конденсация достаточ­но энергоемка, но при этом достигается макси­мально возможное извлечение жидких углеводо­родов и, соответственно, очистка и осушка газа.

В последнее время в России и за рубежом уделяется все большее внимание внедрению но­вых технологий, основанных на законах физики, термодинамики, аэродинамики. Например: регулируемые вихревые трубы;

волновой детандер-компрессор;

сверхзвуковая сепарация.

В данной статье подробно изложены вопросы, связанные с разработкой и промышленным внедрением последней техноло­гии. В 2002 г. ОАО «АК «Сибур» приступило к опытно-промыш­ленному внедрению новой технологии выделения жидких углеводородов из природного и попутного газа, получившей название сверхзвуковой сепа­рации — Super Sonic Separator (3S). Разработчик и лицензи­ар данной технологии — ком­пания TransLang Technologies Ltd. — TLT (Канада). Оператор проекта в России — компания «Фонд деловое сотрудничество "Восток-Запад". Центр "ЭНГО"».

«ЗS»-Texнoлoгия компании TLT уже запатентована в России, США, Австралии, Евразии. Центр «Энго» имеет лицензированные права на ее использование в России.

Развитие этой техноло­гии основано на достижени­ях аэродинамики, связанны» с аэрокосмической техникой. «3S»-CenapaTop (рис. 4) представляет собой участок трубо­провода. Для простоты обслу­живания и замены внутренних устройств сепаратор собран из отдельных сегментов трубопро­вода, соединенных фланцами. Газовый поток под избыточным давлением поступает в сепара­тор, закручивается специаль­ным устройством, разгоняется до сверхзвуковых скоростей в сопле и затем дросселируется. За счет резких перепадов давления (сжатие и расширение), пониже­ния температуры в рабочей зоне происходит разделение потока на газ и жидкость. Последняя отбирается через специальные устройства, а газовый поток поступает в диффузор, где его давление выравнивается, после чего газ направляется потреби­телям.

В результате сепарации по­лучается очищенный газ и жид­кий поток с остатком растворен­ных в нем легких газообразных углеводородов С12, т.е. в се­паратор поступает смесь «жид­кость в газе», а из него — «газ в жидкости».

В зависимости от решаемых задач в «3S»-технологии исполь­зуются до- или сверхзвуковые сопла, различные типы закручивающих устройств и диффузоров. Стенка рабочей зоны может быть снабжена специальной перфорацией для дополнительного отбора жидкости.

На базе этих разработок были созданы соответствующие экспериментальные установ­ки сепарации природного газа, которые прошли тестирование на испытательных стендах. Взяв за основу разработанную и запатентованную в Канаде установку производительнос­тью 7-9 кг/с по входному по­току (около 500 млн нм3/гoд), работающую на испытатель­ном полигоне вблизи г. Калгари (Канада), на одном из предприятий Московской обл. был раз­работан и изготовлен экспери­ментальный стенд (рис. 2) с ус­тановкой «3S»-сепаратора про­изводительностью 1,5-2,5 кг/с по входному потоку, рабочим давлением до 150 атм. и воз­можностью изменения началь­ной температуры от -60 до

+20 0С.

Для выяснения эффектив­ности «3S»-сепаратора при па­раметрах газа, используемых в расчетах, были проведены спе­циальные эксперименты на газодинамическом стенде. На нем было проведено более 400 ис­пытаний при различных темпе­ратурах, давлениях и составах газовых смесей. Испытаны до-, около- и сверхзвуковые режимы сепарации.

Результаты эксперимен­тов приведены в табл. 1 и 2: в табл. 1 — компонентный состав газа на входе в модельный сепа­ратор (точка 1) и выходе из него (точка 2), в табл. 2 — режимные параметры испытаний, а также значения разности измеренных объемных концентраций це­левых компонентов до и после очистки (Δα=α12 , где α1 и α2 являются суммой концентраций компонентов 3-9, см. табл. 1).