ствие заполнения металлической пресс-формы расплавом под давлением поршня.
Центробежное литье - производительный метод получения от-
ливок, имеющих поверхности тел вращения с центральным отверстием. Сущность метода заключается в заполнении расплавом вращающейся формы. В результате получается плотная отливка без усадочных раковин.
Литье по выплавляемым моделям применяется для получения
отливок высокой точности размеров и качества поверхности.
и марганцем, используемые для раскисления и легирования стали. Чугун является дешевым материалом, обладает хорошими литейными и антифрикционными свойствами, износостойкостью, способностью гасить вибрации. Применяется для изготовления деталей машин, приборов, агрегатов, труб. Производство стали. Самым распространенным конструкционным материалом является сталь. В современной металлургии сталь выплавляют в кислородных конвертерах, мартеновских печах и электрических печах (электродуговых и индукционных). Сущностью любого металлургического передела чугуна в сталь является снижение содержания углерода и примесей путем их окисления и перевода в шлак и газы в процессе плавки. Технологический процесс производства стали можно предста- вить следующим образом: Передельный Окисление Ре, Сталmmmmь, шлак чугун, марганца, кремния, стальной ------------------------------- ^ углерода, серы и лом, топливо, фосфора; кипение; флюс раскисле ние В различных способах производства СТАЛИ имеются свои осо- бенности. В кислородно-конвертерном процессе окисление примесей проводят продувкой кислорода через расплавленный чугун, что резко ускоряет окислительные реакции, а следовательно, повышает производительность. Мартеновский способ основан на окислении расплавленного ме- талла кислородом окружающего воздуха, что ведет к низкой производительности, большим капитальным затратам, высокой себестоимости стали. По этой причине мартеновские печи частично заменены на конвертеры, реконструированы в двухванные сталеплавильные агрегаты. Более совершенным методом производства стали является ее выплавка в электропечах, позволяющих повышать температуру до 6000°С. Это дает возможность получать сталь с максимальным удалением вредных примесей (серы и фосфора) и с большим содержанием тугоплавких легирующих элементов. Недостаток метода - большая энергоемкость процесса. Среди принципиально новых методов получения стали более высокого качества являются специальные методы рафинирования расплава. Это - электрошлаковый переплав (ЭШП), вакуумно-дуговой переплав (ВДП), плазменнодуговой (ПДП) и электроннолучевой переплав (ЭЛП), вакуумная индукционная и плазменная плавк | Оболочковое литье применяют для получения фасонных отли- вок из стали, чугуна, алюминиевых и медных сплавов. Этот способ обеспечивает высокую точность размеров отливки, малую шероховатость поверхности, высококачественную структуру металла. |
Билет 66 Сборочное производство Сборка является завершающей стадией машиностроения, в ко- торой аккумулируются результаты всей предыдущей работы конструктора и технолога. От качества сборки зависят эксплуатационные показатели изделия, его надежность, работоспособность и долговечность. Технологический процесс сборки заключается в координировании и последующем соединении деталей в сборочные единицы, механизмы, машины в целом. Деталь является простейшей сборочной единицей. Две или не- сколько деталей, соединенные между собой, образуют узел. Узел, входящий в изделие, называется группой. Изделие в зависимости от его сложности может быть расчленено на большее или меньшее число сборочных единиц. Сборочные работы производятся на сборочных участках и це- хах. Основными видами сборки являются: стационарная и подвижная. При стационарной сборке само изделие неподвижно, а бригада сборщиков, переходя от одного изделия к другому, выполняет сборочные операции. При подвижной сборке изделия принудительно перемещаются от одного поста к другому, на каждом из которых выполняется определенная сборочная операция. Перемещение изделия может быть непрерывным или периодическим. При непрерывном перемещении изделия сборщик выполняет операцию в процессе движения конвейера, скорость которого соответствует такту сборки. При периодическом перемещении сборочная операция выполняется во время остановки конвейера. Методы соединения сборочных элементов Соединения деталей и узлов подразделяются на подвижные и неподвижные. Неподвижные соединения делятся на разъемные (разбираемые) и неразъемные (неразбираемые). Разъемные соединения могут быть разобраны без повреждения деталей. Эти соединения выполняются глухой, тугой, напряженной или плотной посадками, цинтовыми соединениями, штифтовыми | Билет 68 Роль термической обработки в изменении механических свойств металлов Термической обработкой называют процессы, связанные с нагревом и охлаждением, вызывающие изменения внутреннего строения сплава, и в связи с этим изменения физических, механических и других свойств. Основными видами термической обработки стали являются отжиг, нормализация, закалка и отпуск. Назначение отжига - снижение твердости, измельчение зер На результат отжига влияют следующие факторы: 1) скорость нагрева (допустимая скорость нагрева зависит от химического состава стали. Чем больше в стали углерода и специальных примесей, тем менее она теплопроводна и, следовательно, тем медленнее следует ее нагревать). 2) температура нагрева (отжига); температуру нагрева устанавливают в зависимости от содержания углерода и специальных элементов. 3) продолжительность выдержки при температуре нагрева (отжига); 4) скорость охлаждения. Полный отжиг характеризуется нагревом на 20-30 град выше температуры интервала превращений и медленным охлаждением до температуры ниже интервала превращений (обычно до 400 - 5000 С). Полный отжиг применяют для перекристаллизации структуры в горячодеформированных сталях и фасонном литье. Отжиг горячедеформированной стали снижает прочность и повышает пластичность. Если исходная структура трудно поддается исправлению и полный отжиг не в состоянии улучшить структуру стали, то применяют двойной отжиг. Первый высокий отжиг проводят при повышенной температуре 950-1000° С. Неполный отжиг применяют для поковок, горячая обработка давлением которых проведена правильно с получением |
соединениями и др. К неразъемным соединениям относятся такие, разборка которых при эксплуатации не предусмотрена. Такие соединения получают методами сварки, пайки, клепки, клеевой технологией. Сварка является одним из прогрессивных способов получения неразъемных соединений, который обеспечивает значительную экономию металла, снижение массы изделия и трудоемкости. Сваркой соединяют как однородные, так и неоднородные металлы и сплавы, металлы с неметаллами, пластмассы. Методы сварки можно классифицировать по нескольким при- знакам: физическим, по виду используемой энергии, способу образования сварного соединения, степени автоматизации. По виду энергии все методы сварки подразделяются на шесть групп: 7) электрическая; 8) химическая; 9) механическая; 10) лучевая; 11) электромеханическая; 12) химико-механическая сварка. По степени автоматизации различают ручную, полуавтоматическую и автоматическую сварку. Сварные соединения получают двумя способами: плавлением и давлением. Способность материала образовывать надежное и прочное сварное соединение называется свариваемостью. Хорошей свариваемостью обладают низкоуглеродистые и низколегированные стали, технически чистый алюминий. Низкую свариваемость имеют чугу-ны, высокохромистые стали, латуни, тугоплавкие металлы. Эффективность выполнения сборочных операций, качество из- делий и их себестоимость во многом зависят от конструктивных особенностей собираемого изделия и степени автоматизации тех- нологического процесса сборки. Упрощение конструкции изделия, использование универсальных самопереналаживающихся автоматических сборочных машин с адаптивной технологической оснасткой для подачи, базирования и выверки относительного положения различных соединяемых деталей перед их сборкой в изделие являются основными путями совершенствования сборочных процессов | удовлетворительной микроструктуры. В этом случае назначением неполного отжига является перекристаллизация перлита и снятие внутренних напряжений перед механической обработкой. Температура нагрева при неполном отжиге доэвтектоидных сталей 770 - 800о С. Изотермический отжиг При изотермическом отжиге аустенит превращается в феррито-цементитную смесь не при охлаждении в определенном интервале температур, как это происходит при обычном полном отжиге, а вовремя выдержки при постоянной температуре. Для изотермического отжига сталь нагревают до оптимальной температуры и после выдержки быстро охлаждают до температуры немного ниже критической точки (650-7000 С). При этой температуре сталь выдерживают до полного распада аустенита, а затем охлаждают на воздухе. Преимуществом изотермического отжига по сравнению с обычным является значительное сокращение времени отжига и получение более однородной структуры. Практически изотермический отжиг проводят в двух печах: в одной печи детали нагревают, затем их переносят в другую печь, имеющую температуру немного ниже. Низкотемпературный отжиг (высокий отпуск) применяют главным образом для легированных сталей (хромистых, хромоникелевых и др.) для снятия внутренних напряжений и для снижения твердости. Фазовая перекристаллизация при этом виде отжига отсутствует. Полного снятия внутренних напряжений достигают при 0 нагреве до 600 С, поэтому низкотемпературный отжиг можно проводить 0 в температурном интервале от 600 С. Выдержка для снятия внутренних напряжений тем меньше, чем выше температура нагрева. Охлаждение после нагрева должно быть достаточно медленным, чтобы вновь не возникли внутренние напряжения. Диффузионный отжиг (гомогенизация) Этот отжиг характеризуется нагревом до температуры значительно выше температур интервала превращений (на 180 - 300° С) с последующим медленным охлаждением. Такой отжиг применяют для выравнивания химической неоднородности зерен твердого раствора путем диффузии, т.е. уменьшения микроликвации в крупных фасонных стальных отливках и слитках, главным образом легированной стали. Так как скорость диффузии увеличивается с повышением температуры, а количество продиффундированного вещества становится тем больше, чем длительнее выдержка, то для энергичного протекания диффузии необходимы высокая температура и продолжительная выдержка. В результате высокотемпературного длительного отжига происходит рост зерна. Этот недостаток микроструктуры устраняют тем, что слитки подвергают горячей механической обработке, в результате которой полностью уничтожается крупнозернистая структура литой стали; поэтому после гомогенизации слитки не подвергают отжигу для улучшения структуры. Только в тех случаях, когда после гомогенизации слитки получаются с повышенной твердостью (например, слитки высоколегированных сталей), проводят дополнительный низко температурный отжиг при 650-680° С. Нормализацией называют нагрев стали до температуры на 30-50 град выше верхних критических точек, выдержку при этой температуре и охлаждение на спокойном воздухе. При нагреве низкоуглеродистых сталей до температур нормализации происходят те же процессы, что и при отжиге, т.е. измельчение зерен. Кроме того, вследствие охлаждения более быстрого, чем при отжиге, и получающегося в результате этого переохлаждения, строение перлита более тонкое (дисперсное), и количество эвтектоида (вернее, квазиэвтектоида) больше, чем при медленном охлаждении (при отжиге). По сравнению со структурой отжига структура нормализации более мелкая, а механические свойства более высокие (повышенная прочность и твердость); это обеспечивается ускоренным охлаждением (на воздухе) по сравнению с медленным охлаждением (вместе с печью) при отжиге. Если при охлаждении на воздухе образуется (в некоторых высоколегированных сталях) не перлит, а мартенсит - структура, характерная для закаленной стали, то такую термическую обработку называют не нормализацией, а воздушной закалкой. Закалкой называют нагрев стали выше критической точки с последующим быстрым охлаждением. Обычно нагрев проводят на 30-50 град выше линии GSK на диаграмме железо - цементит. Назначение закалки - получение высокой твердости или повышенной прочности. На результат закалки, как и отжига, влияют четыре основных фактора – скорость нагрева, температура нагрева, продолжительность выдержки и скорость охлаждения. Основным и решающим фактором является скорость охлаждения - твердость и физико-механические свойства стали связаны со скоростью охлаждения. Отпуском называют нагрев закаленной стали до 0 температуры ниже критической точки (727 С) с последующим охлаждением. Целью отпуска является частичное или полное устранение внутренних напряжений, снижение твердости и повышение вязкости. Отпуску подвергают закаленную сталь со структурой тетрагонального мартенсита и остаточного аустенита. |
Билет 68 (вариант 2) Роль термической обработки в изменении механических свойств металлов Виды термической обработки:Отжиг, нормализация, закалка, старение,улучшение. Термической обработкой стали называется совокупность технологических операций ее нагрева, выдержки и охлаждения в твердом состоянии с целью изменения ее структуры и создания у нее необходимых свойств: прочности, твердости, износостойкости, обрабатываемости или особых химических и физических свойств. Термообработка бывает предварительная и окончательная. Предварительная термообработка (отжиг поковок) проводится непосредственно после ковки с целью предотвращения появления флокенов, снижения твердости, для облегчения последующей механической обработки, уменьшения остаточных напряжений и подготовки структуры под окончательную термообработку. Окончательная термообработка (нормализация, закалка с высоким отпуском и т.д.) придает металлу требуемый уровень механических свойств, обеспечивает необходимую структуру. Отжигом называется процесс термообработки, состоящий из нагрева стали до заданной температуры, выдержки при этой температуре и последующего медленного охлаждения. Закалка стали – процесс, состоящий из нагрева стали до определенной температуры, выдержки при этой температуре и быстрого охлаждения. Цель закалки – придание высокой твердости и прочности за счет получения неравновесных структур. Эти неравновесные структуры можно получить лишь при очень высоких скоростях охлаждения. Длительность выдержки при нагреве под закалку зависит от размеров гуделий и массы садки. В качестве закалочных сред (для быстрого охлаждения) используются вода, масло индустриальное и раствор щелочи. Охлаждающая способность жидкостей различна. Отпуск стали заключается в нагреве до определенных температур (более низких им при закалке), выдержке и охлаждении. Цель отпуска – перевести структуру стали в более равновесное состояние, придать стали требуемые свойства. Кроме того при отпуске снимаются внутренние напряжения, полученные при закалке. В зависимости от температуры, отпуск бывает низкий, средний, высокий. При низком отпуске сталь нагревается до температуры 150-3000С. Это приводит к снижению внутренних напряжений в стали. При низком отпуске твердость стали снижается незначительно. При среднем отпуске сталь нагревается до температуры 300-5000С. средний отпуск значительно понижает твердость и обеспечивает высокую вязкость стали. Среднему отпуску подвергают пружины, рессоры, штампы для холодной обработки. Высокий отпуск проводят при температуре 5006800С. высокий отпуск значительно понижает твердость и сопротивление разрыву и повышает пластичность и ударную вязкость. Высокому отпуску подвергают валы, оси и т.д. Химико-термической обработкой называют поверхностное насыщение стали соответствующим элементом (например – углеродом, азотом и т.д.) путем его диффузии в атомарном состоянии из внешней среды при высокой температуре. Цементацией называется процесс насыщения поверхностного слоя стали углеродом. Цель цементации – получение твердой и износостойкой поверхности. Цементация бывает двух видов: газовая цементация и цементация в твердом карбюризаторе. В качестве твердого карбюризатора применяется активированный уголь (древесный уголь или каменноугольный полукокс) с активаторами. Газовую цементацию осуществляют нагревом изделия в среде газов, содержащих углерод: синтин, керосин и т.д. Окончательные свойства цементированных изделий достигаются в результате термической обработки, выполняемой после цементации – закалки и низкого отпуска. Это высокая твердость в цементированном слое и хорошие механические свойства сердцевины. Цементации подвергают низкоуглеродистые стали. Контроль термической обработки Контроль термической обработки осуществляется определением механических свойств на образцах, а также замером твердости на приборах: Бриннель и Роквелл. Определение твердости на приборе Бриннель осуществляется путем вдавливания в поверхность детали стального шарика под нагрузкой |
По диаметру лунки после снятия нагрузки определяют твердость детали. Определение твердости методом Роквелла осуществляется путем вдавливания в поверхность детали алмазного конуса (под нагрузкой). По высоте отпечатка определяется твердость. Оборудование для термообработки Печи – имеют газонепроницаемый корпус из листовой стали, обложенный огнеупорным кирпичом и теплоизоляционными материалами. На внутренних боковых стенках печей размещены нагреватели. |