В точке S при содержании 0,8%С и при температуре 727°С весь аустенит распадается и одновременно кристаллизуется тонкая механическая смесь феррита и цементита - перлит.
Линия PSK соответствует окончательному распаду аустенита и образованию перлита
AS(0.8%C)
ФP(0.02%C)+ЦК(6Ю67%С)А(0.8)
П(0.8)перлитВ области ниже линии PSK никаких изменений структуры не происходит.
Структурные превращения в сплавах, находящихся в твердом состоянии, вызваны следующими причинами: изменением растворимости углерода в железе в зависимости от температуры сплава (QP и SE), полиморфизмом железа (PSK) и влиянием содержания растворенного углерода на температуру полиморфных превращений (растворение углерода в железе способствует расширению температурной области существования аустенита и сужению области феррита).
Диаграмма стабильного равновесия Fe - Fе3С, обозначенная на графике пунктиром, отображает возможность образования высокоуглеродистой фазы - графита - на всех этапах структурообразования в сплавах с повышенным содержанием углерода. Диаграмма состояния стабильной системы железо - графит отличается от метастабильной системы железо-цементит только в той части, где в фазовых равновесиях участвует высокоуглеродистая фаза (графит или цементит).На диаграмме состояния различают две области: стали и чугуны. Условия принятого разграничения - возможность образования ледебурита (предельная растворимость углерода в аустените):
стали - до 2,14% С, не содержат ледебурита;
чугуны - более 2,14% С, содержат ледебурит.
В зависимости от содержания углерода (%) железоуглеродистые сплавы получили следующие названия:
менее 0,83 - доэвтектоидные стали;
0,83 - эвтектоидные стали;
0,83...2 - заэвтектоидные стали;
2...4,3 - доэвтектические чугуны;
4,3...6,67 - заэвтектические чугуны.
Сплавляя железо с углеродом и варьируя содержание компонентов, получают сплавы с различными структурой и свойствами.
Доэвтектоидная сталь (0.7%C) отмечаем заданный спав вертикалью I на диаграмме состояния и строим кривую нагрева.
По кривой нагрева мы можем определить какие изменения происходят в сплаве при нагреве до определенной температуры 1600°С. До точки 1 сплав находится в жидком состоянии при 1490 из жидкого состояния начинают выделяться кристаллы аустенита состава 1’
По мере охлаждения в интервале температур 1-2 происходит выделение кристаллов аустенита переменного состава, концентрация которых определяется по линии солидус от точки 1’до точки 2
Жидкая фаза обогащается углеродом концентрация которого меняется по линии ликвидус от 1 до 2’, формула Ж12’
А1’2. В точке 2 заканчивается первичная кристаллизация и сплав имеет однофазную структуру А аустенит, при понижении температуры до точки 3 начинается вторичная кристаллизация аустенит превращается в феррит по формуле А+Ф34 Ф+П при достижении точки 9 состав смеси Ф+П примет эвтектоидную концентрацию точки (S, 0.8%C), и при постоянной температуре будет превращаться в феррит+перлит площадка на кривой. Концентрация фаз Ж2.14+А0.6 ОВКЖ=0.7-0,6/2,14-0,6*100=6,94% овкА=2,14-0,7/2,14-0,6*100=93,5% концентрация углерода в жидкой фазе при температуре 1400˚С2,14% С, твердой фазе 0,6% С
Сталь У10 инструментальная сталь значит, при термообработке нам нужно добиться высокй твердости. Такие свойства как пластичность нас не интересуют значит проводим не полную закалку П
A+ЦII МЗАК +Аост+ЦII т.к сталь заэвтектоидная нагреваем до температуры АС1+30-50°С, после закалки проводим низкий отпуск, т.к при нагреве свыше 200°С происходит полный отпуск и теряется твердость, для снятия внутренних напряжений после закалки. При низком отпуске твердость практически не падает. Температура отпуска 150-200°C выдержка 1-2.5 часа структура мартенсит отпуска превращения при отпуске до 200°СМзак
Мотп. Сталь 35 относится к среднеуглеродистым сталям и закаливается слабо.Сталь доэвтектоидная значит применяем полную закалку Ф+П А МЗАК нагреваем сталь до температуры АС3+30-50°С и охлаждаем получаем структуру мартенсит закалки. После закалки нужно произвести отпуск стали в условиях сказано, что после отпуска структура мартенсит отпуска значит применяем низкий отпуск 150-200°C выдержка 1-2.5 часа структура мартенсит отпуска. После закалки сталь У10 имеет структуру ЦII+М твёрдость цементита выше чем мартенсита, а сталь 35 имеет структуру мелкозернистого мартенсита, отсюда твёрдость У8 выше твёрдости Стали 35.Сталь У10 имеет больше углерода чем Сталь35, отсюда выше её твёрдость.7. Расшифровки марок данных сталей и их свойства.
Легирующие элементы
Хром - повышает твердость, коррозионностойкость;
Никель - повышает прочность, пластичность, коррозионностойкость;
Вольфрам - увеличивает твердость и красностойкость, т.е. способность сохранять при высоких температурах износостойкость;
Ванадий - повышает плотность, прочность, сопротивление удару, истиранию;
Кобальт - повышает жаропрочность, магнитопроницаемость;
Молибден - увеличивает красностойкость, прочность, коррозионностойкость при высоких температурах;
Марганец - при содержании свыше 1 процента увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок;
Титан - повышает прчность, сопротивление коррозии;
Алюминий - повышает окалиностойкость;
Ниобий - повышает кислотостойкость;
Медь - уменьшает коррозию.
4Х5МФС
Классификация: Сталь инструментальная штамповая, теплостойкая. Углерода 0.4%,хрома 5%,молибдена 1%, ванадия 1%, кремния 1%
Применение: молотовые штампы паровоздушных и пневматических молотов с массой падающих частей до 3 т при деформации легированных конструкционных и нержавеющих сталей, прессовый инструмент для обработки алюминиевых сплавов, вставки и пуансоны для высадки на горизонтально-ковочных машинах.
По качеству: качественная
По структуре: мартенситного класса
Термическая обработка: Закалка 1000 С, масло. Отпуск 560 С, 2 ч., δВ 1710 МПа, HB241,δ12%
Структура после ТО: сорбит отпуска
Химический состав:
C | 0.32 - 0.4 |
Si | 0.9 - 1.2 |
Mn | 0.2 - 0.5 |
Ni | до 0.35 |
S | до 0.03 |
P | до 0.03 |
Cr | 4.5 - 5.5 |
Mo | 1.2 - 1.5 |
V | 0.3 - 0.5 |
Cu | до 0.3 |
ХВ5
Классификация Сталь инструментальная легированная, высоко углеродистая содержание углерода более 1%, хрома 1%, вольфрама 5%
Применение: : для прошивных пуассонов,инструментов для чистового резания твердых материалов с небольшой скоростью и граверных работ.
По качеству: качественная т.к содержание вредных примесей не более 0.04 % .
По структуре: перлит + цементит вторичный П+ЦII перлитного класса
Термическая обработка: Термическая обработка инструментальных сталей, как правило, включает закалку и низкий отпуск получают структуру мартенсит отпуска δВ 250...350 МПа , 285 HB, δ= 3 %
Химический состав:
C | 1.25 - 1.45 |
Si | 0.15 - 0.35 |
Mn | 0.15 - 0.4 |
Ni | до 0.35 |
S | до 0.03 |
P | до 0.03 |
Cr | 0.4 - 0.7 |
W | 4.8-5.3 |
V | 0.15 - 0.3 |
Cu | до 0.3 |
36Х2Н2МФА
Характеристика материала Данный материал является легированной сталью марки 36Х2М2МФА, которая содержит 0.36% С, хрома 2%, никеля 2%, молибдена 1%, ванадия 1%
Классификация Сталь конструкционная легированная улучшаемая
Применение: Для крупных ответственных деталей-дисков, крепежных болтов и т. д.
По качеству: высококачественная
По структуре: феррит+перлит мартенситного класса
Термическая обработка: Закалка 850 С, охлаждение в масле. высокий отпуск 600 С охлаждение на воздухе.
δв 1150 МПа, δв 17%, HB = 269
Структура после ТО: сорбит отпуска
Химический состав:
C | до 0.1 |
Si | до 0.8 |
Mn | 4.5-5.3 |
Ni | до 0.6 |
S | до 0.03 |
P | до 0.045 |
Cr | 13 - 15 |
N | 0.15 - 0.25 |
Ti | до 0.2 |
Cu | до 0.3 |
Ст4сп