Смекни!
smekni.com

Курсовая работа по предмету

МАТЕРИАЛОВЕДЕНИЕ


Содержание

1. Введение ………………………………………………………………...2

2. Основные характеристики кристаллической решетки ………………….2

3. Скорость охлаждения при закалке и факторы влияющие на выбор скорости охлаждения при закалке ……………………………………………..4

4. Диаграмма состояния системы медь-серебро. Свойства сплавов в данной системе- ………………………………………………………………….6

5. Диаграмма состояния железо-углерод. Описание данной диаграммы. 7

6.Углеродистые стали У8 и 35 ……………………………………………11

7.Расшифровки марок данных сталей и их свойства ……………………….11

Введение

Материаловедение - это наука о взаимосвязи электронного строения, структуры материалов с их составом, физическими, химическими, технологическими и эксплуатационными свойствами. Материаловедение относится к числу основополагающих дисциплин для машиностроительных специальностей. Это связано с тем, что получение, разработка новых материалов, способы их обработки являются основой современного производства. Материаловедение является основой для изучения многих специальных дисциплин.

Разнообразие свойств материалов является главным фактором, предопределяющим их широкое применение в технике. Материалы обладают отличающимися друг от друга свойствами, причем каждое зависит от особенностей внутреннего строения материала. В связи с этим материаловедение как наука занимается изучением строения материала в тесной связи с их свойствами. Основные свойства материалов можно подразделить на физические, механические, технологические и эксплуатационные.

От физических и механических свойств зависят технологические и эксплуатационные свойства материалов.

Среди механических свойств прочность занимает особое место, так как прежде всего от нее зависит неразрушаемость изделий под воздействием эксплуатационных нагрузок. Учение о прочности и разрушении является одной из важнейших составных частей материаловедения. Оно является теоретической основой для выбора подходящих конструкционных материалов для деталей различного целевого назначения и поиска рациональных способов формирования в них требуемых прочностных свойств для обеспечения надежности и долговечности изделий.


1. Основные характеристики кристаллической решетки.

В огромном ряду материалов, с незапамятных времен известных человеку и широко используемых им в своей жизни и деятельности, металлы всегда занимали особое место.

Подтверждение этому: и в названиях эпох (золотой, серебряный, бронзовый, железный века), на которые греки делили историю человечества: и в археологических находках металлических изделий (кованые медные украшения, сельскохозяйственные орудия); и в повсеместном использовании металлов и сплавов в современной технике.

Причина этого - в особых свойствах металлов, выгодно отличающих их от других материалов и делающих во многих случаях незаменимыми.

Металлы – один из классов конструкционных материалов, характеризующийся определённым набором свойств:

«металлический блеск» (хорошая отражательная способность);

пластичность;

высокая теплопроводность;

высокая электропроводность.

Данные свойства обусловлены особенностями строения металлов. Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объёму металла, т.е. принадлежать целой совокупности атомов.

Таким образом, пластичность, теплопроводность и электропроводность обеспечиваются наличием «электронного газа».

Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определённым порядком – периодичностью, как по различным направлениям, так и по различным плоскостям. Этот порядок определяется понятием кристаллическая решётка.

Другими словами, кристаллическая решетка это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело.

Элементарная ячейка – элемент объёма из минимального числа атомов, многократным переносом которого в пространстве можно построить весь кристалл.

Элементарная ячейка характеризует особенности строения кристалла. Основными параметрами кристалла являются: размеры рёбер элементарной ячейки- a, b, c , периоды решётки-расстояния между центрами ближайших атомов в одном направлении выдерживаются строго определённые углы между осями (

).

Координационное число (К)- указывает на число атомов, расположенных на ближайшем одинаковом расстоянии от любого атома в решетке.

Базис- решетки количество атомов, приходящихся на одну элементарную ячейку решетки.

Плотность упаковки атомов в кристаллической решетке – объем, занятый атомами, которые условно рассматриваются как жесткие шары. Ее определяют как отношение объема, занятого атомами к объему ячейки (для объемно-центрированной кубической решетки – 0,68, для гранецентрированной кубической решетки – 0,74)

Классификация возможных видов кристаллических решеток была проведена французским ученым О. Браве, соответственно они получили название «решетки Браве». Всего для кристаллических тел существует четырнадцать видов решеток, разбитых на четыре типа;

Кубическая (рис. а)– узлы решетки совпадают с вершинами элементарных ячеек;

Объемно-центрированная кубическая ОЦК (рис а) – атомы занимают вершины ячеек и ее центр (V, W, Ti, )

Гранецентрированная кубическая ГЦК (рис. б)– атомы занимают вершины ячейки и центры всех шести граней (Ag, Au,

Fe)

Гексагональная плотноупакованная (ГПУ) – имеется 3 дополнительных атома в средней плоскости (цинк).

Кристаллическая решетка платины ГЦК (рис.б) основные характеристики координатное число 12, базис 4, плотность упаковки атомов в кристаллической решетке -0,74

Расчет базиса: Рассмотрим рисунок б. 8 граней куба элементарной ячейки, каждый атом в вершине куба принадлежит одновременно 8-ми сопряженным элементарным ячейкам и на данную ячейку приходится только 1/8 массы атома, а на всю ячейку 1/8Ч8=1 атом. В плоскостях тоже есть атомы 6 плоскостей каждый атом принадлежит двум элементарым ячейкам. Отсюда базис равен 1+3=4.


2. Скорость охлаждения при закалке и факторы влияющие на выбор скорости охлаждения при закалке.

Закалка стали - термическая обработка, включающая нагрев до температур выше верхних критических точек на 30...50°С, выдержку при этих температурах до полного прогрева металла и последующее очень быстрое его охлаждение. В результате закалки, в стали из аустенита образуется мартенсит.

Мартенсит - пересышенный твёрдый раствор углерода в αFe. Стали, подвергающиеся закалке, характеризуются закаливаемостью и прокаливаемостью.

Цель - повысить твердость, износостойкость и прочность.

Скорость охлаждения – критический параметр. В зависимости от скорости охлаждения процессы в структуре могут быть 1) диффузионными (малая скорость) 2) без диффузионными (большая скорость). Результат в зависимости от скорости охлаждения качественно различный. Выбор скорости охлаждения должен удовлетворять таким параметрам как: получение структуры мартенсита, отсутствие трещин, минимальные деформации.

Факторы, влияющие на выбор скорости при охлаждении, при закалке: Для получения требуемой структуры изделия охлаждают с различной скоростью, которая в большой степени определяется охлаждающей средой, формой изделия и теплопроводностью стали. Также существенное влияние на выбор скорости охлаждения осуществляют легирующие элементы, которые «отодвигают» область распада аустенита, следствие-снижение критической скорости охлаждения.

Режим охлаждения должен исключить возникновение больших закалочных напряжений. При высоких скоростях охлаждения при закалке возникают внутренние напряжения, которые могут привести к короблению и растрескиванию.

Критическая скорость охлаждения минимальная скорость охлаждения стали, при которой не происходит распада аустенита с образованием перлита, а весь аустенит переохлаждается и превращается в мартенсит.


3. Диаграмма состояния системы медь-серебро. Свойства сплавов в данной системе.

Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (переменная растворимость)

По внешнему виду диаграмма похожа на диаграмму состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии. Отличие в том, что линии предельной

растворимости компонентов не перпендикулярны оси концентрации. Появляются области, в которых из однородных твердых растворов при понижении температуры выделяются вторичные фазы.

abc - линия ликвидус: Хь - химический состав эвтектики.

adec - линия солидус.

df, eg – линии переменной предельной растворимости в твердом состоянии.

α- ограниченный твердый раствор компонента Сu в компоненте Ag.

β - ограниченный твердый раствор компонента Ag в компоненте Cu.

В заэвтектических сплавах. Максимальное содержание компонента Cu в фазе α определяется точкой Е и при охлаждении снижается до точки G . Поэтому при охлаждении от точки E до G точки, происходит выделение компонента Cu виде вторичных кристаллов β-фазы, богатой компонентом В. Конечная структура сплава будет α+βII. В эвтектическом сплаве в точке Ж превратится в эвтектику Ж

α+β.