Смекни!
smekni.com

Электротехнологические установки (стр. 18 из 32)

Рис. 8.4. Плазмотрон с газовихревой стабилизацией дуги:

1 - вихревая камера; 2 - внутренний стержневой электрод; 3 - столб дуги; 4 - выходной трубчатый электрод; 5 - соленоид; 6 - тангенциальные каналы

На рис. 8.4 показана принципиальная схема плазмотрона со стабилизацией дуги вихревым потоком газа. Газ, подаваемый через тангенциальные отверстия 6 в вихревую камеру 1, создает в канале плазмотрона вихревой поток, по оси которого между электродами 2 и 4 горит электрическая дуга 3. Вследствие интенсивных процессов теплообмена газ нагревается и плазма в виде струи истекает из сопла через электрод 4. В вихревой камере и канале электрода 4 существует градиент плотности газа, поскольку основная часть его движется в пристеночной области. В результате этого столб дуги «выталкивается» на ось электрода. Стабилизирующее действие газового вихря сохраняется до тех пор, пока не произойдет прогрев всего газа и появится его заметная проводимость, либо пока не произойдет угасание тангенциальной составляющей скорости газового потока. Под действием тангенциальной составляющей скорости газового потока опорное пятно дуги в выходном электроде перемещается по поверхности канала и сносится вниз по потоку осевой компонентной скорости. Этим обеспечивается долговечность трубчатых электродов. Среднемассовая температура плазмы при работе на азоте и воздухе в таких плазмотронах не превышает 5·103-6·103 К. Коэффициент полезного действия η = ΔНG/Nэл (где ΔН - разность энтальпий нагретого и холодного газа; G - секундный расход газа; Nэл = VI - электрическая мощность плазмотрона) достигает 0,75-0,85. Более совершенным является плазмотрон с секционированным электродом и распределенной между секциями подачей плазмообразующего газа, что позволяет значительно поднять напряжение на дуге. Уменьшение эрозии электродов в плазмотронах с вихревой стабилизацией может быть осуществлено за счет наложения на радиальные участки дуги осевого магнитного поля. Конструктивная простота, достаточно высокий тепловой КПД и большой ресурс работы электродов определили широкое распространение рассмотренных типов плазмотронов.

Модификацией плазмотронов со стабилизацией дуги стенкой и вихревым потоком газа является плазмотрон с межэлектродными вставками. В плазмотроне с поперечно-обдуваемыми дугами и коаксиальным расположением электродов управление характеристиками дугового разряда производится осевым магнитным полем, в котором движется как проводник с током столб дугового разряда.

Рис. 8.6. Схема плазмотрона с магнитной стабилизацией дуги:

1 - центральный электрод; 2 - внешний электрод; 3 - соленоид; 4 - столб дуги; 5 - струя плазмы; 6 - подвод газа; 7 - изолятор

Схема плазмотрона с магнитной стабилизацией дуги показана на рис. 8.6. Между электродами 1 и 2 горит электрическая дуга 4. Магнитное поле создается соленоидом 3. Газ проходит между электродами, интенсивно нагревается в межэлектродном зазоре электрической дугой и выходит в виде высокотемпературной струи 5 через сопло.

Пространственное положение дуги в таких плазмотронах определяется тремя факторами: геометрическим положением центрального электрода, аэродинамическими силами и формой магнитного поля. Дуга удерживается вблизи середины оси магнитной катушки и под действием набегающего потока сносится в сторону его течения. Скорость вращения дуги пропорциональна току разряда и напряженности магнитного поля. При изготовлении центрального электрода из тугоплавкого материала КПД плазмотрона составляет 0,52-0,76 и преимущественно зависит от потерь в цилиндрический электрод.

Плазмотроны, работающие на переменном однофазном токе, конструктивно схожи с рассмотренными.

В плазменной технологии получили применение трехфазные плазмотроны, которые представляют собой комбинации из трех однофазных.

По конструктивным особенностям различают одно- и многокамерные

трехфазные плазмотроны. В случае однокамерных плазмотронов все три дуги горят в одном объеме. Устойчивость дугового разряда обеспечивается применением тугоплавких электродов, сохраняющих высокую эмиссионную способность при перемене полярности тока.

Кроме рассмотренных в практике нашли применение плазмотроны, для питания которых одновременно используют постоянный и переменный токи, а также переменный ток промышленной и высокой частоты.

Мощность сопровождающей дуги в этом случае составляет 5-8 % от мощности силовой дуги.

Регулирование мощности в плазмотронах осуществляется изменением сопротивления в цепи питания (регулируемые дроссели), напряжением источника питания, мощностью дуги сопровождения.

Энергетические и вольт-амперные характеристики плазмотронов зависят от многих взаимосвязанных параметров. Кроме того, они являются нелинейными, поэтому теоретическое их исследование затруднено, а порой и невозможно.

Поэтому плазмотроны обычно разрабатываются по целевому назначению.

Рис. 8.9. Схемы высокочастотных плазмотронов

Высокочастотные плазмотроны (рис. 8.9) подразделяют на индукционные, емкостные, факельные, сверхвысокочастотные (СВЧ).

Высокочастотные плазмотроны включают в себя электромагнитную катушку-индуктор 4 или электроды 6, 8, подключенные к источнику высокочастотной энергии 1, разрядную камеру

В высокочастотном индукционном плазмотроне (рис. 8.9, а) газ нагревается вихревыми токами, как при индукционном нагреве проводящей среды в переменном электромагнитном поле индуктора при частоте от 6,3 кГц до 20 МГц.

В начале процесса для образования проводящей среды в зоне индуктора создается область высокотемпературного проводящего газа с помощью постороннего источника (например, дуговой разряд). Этот процесс называют зажиганием. После зажигания в камере возникает самоподдерживающийся стационарный безэлектродный разряд 2. Глубина проникновения (δ, см) вихревых токов в плазму определяется по формуле

_____ δ = (1/2√ρ/(μf),

где ρ - удельное электрическое сопротивление плазмы; f - частота, Гц; μ - магнитная проницаемость, для плазмы μ = 1. Удельное сопротивление аргона, азота и водорода при 15 000 К равно соответственно 0,01, 0,025 и 0,1 Ом·см. Продувая газ через разрядную камеру, на выходе из нее получают струю плазмы 5 с температурой (7,5÷15,0) 103 К со скоростью 10-60 м/с.

Высокочастотный емкостный плазмотрон (рис. 8.9, б) имеет высоковольтный 6 и заземленный 8 электроды, между которыми возникает высокочастотное электрическое поле. Электроны, находящиеся в газе, получают энергию от высокочастотного электрического поля и при столкновениях обмени- ваются ею с нейтральными частицами, повышая тем самым температуру газа. В высокочастотном факельном плазмотроне (рис. 8.9, в) при давлении, близком к атмосферному, факельный разряд имеет форму пламени свечи. Наиболее легко факельный разряд возникает на электродах с большой кривизной поверхности (на остриях и т. д.) при частотах электрического поля порядка 10 мГц и выше.

В сверхвысокочастотном плазмотроне (рис. 8.9, г) энергия от источника питания в зону разряда подается по волноводу 7.

Высокочастотные плазмотроны имеют широкие перспективы применения в химической и металлургической промышленности благодаря большому ресурсу работы (2-3 месяца без замены деталей), возможности получения чистой плазмы агрессивных газов, таких, как хлор, кислород и др., т. е. без засорения продуктами разрушения электродов. Однако пока они имеют более низкий, чем дуговые плазмотроны, энергетический КПД и сложные источники питания.

8.2. Энергетические характеристики плазмотронов и источники питания

К энергетическим характеристикам плазмотрона относятся зависимости параметров дуги от условий работы - рода плазмообразующего газа, давления, геометрических размеров электродов, напряженности управляющего магнитного поля, материала электродов, их температуры и эмиссионной способности, скорости разрушения. Одновременный учет всех этих факторов в настоящее время не представляется возможным, поэтому для расчета ВАХ разряда и определения некоторых размеров электродов пользуются эмпирическими формулами, получаемыми в результате критериального обобщения многочисленных экспериментальных данных.

В настоящее время уравнения ВАХ и КПД составлены для плазмотронов определенных схем и справедливы в строгих границах геометрического подобия, диапазонах изменений токов и расходов газа, для однокомпонентных или стандартных плазмо-образующих сред, а также внутрикамерных давлений, напряженностей магнитных полей.

Мощность плазмотронов определяется соотношением тока дуги и напряжением: Р = IU = IЕl, которое, в свою очередь, определяется длиной дуги l и напряженностью электрического поля Е. Мощность, выделяющаяся в электродах, как было показано, зависит от тока дуги и материала электрода. Так как электроды плазмотронов должны иметь длительный срок работы, а скорость их разрушения прямо пропорциональна току дуги, то при определении параметров разряда следует ориентироваться на минимальные токи и максимальные напряжения, обеспечивающие заданную температуру плазмы и необходимую мощность дуги при заданных габаритных размерах электродов.

Как было показано, напряженность электрического поля Е дуги зависит от рода газа, давления и скорости обдува. Для плазмотронов в этой зависимости появляется дополнительный фактор - температура окружающего газа. В плазмотронах с продольным обдувом напряженность поля дуги имеет максималь- ное значение вблизи зоны подачи газа и постепенно уменьшается в направлении истечения плазмы. Значение Е для дуги, обдуваемой осевым потоком аргона при токах 100-300 А и расходе его 0,25- 1,23 г/с, составляет 4,5-14 В, уменьшаясь при росте тока и снижении расхода газа. Отсюда следует, что для получения необходимой мощности выходной электрод должен иметь необходимые длину и диаметр канала для размещения в нем электрической дуги длиной l. Как правило, длину электрода выбирают несколько большей, чем длина дуги, для предотвраще- ния выхода ее на торец электрода в неуправляемую зону. При конструировании плазменных технологических аппаратов следует учитывать, что напряженность электрического поля дуги растет с увеличением рабочего давления. Выбор схемы источников питания плазмотронов основан на анализе устойчивости дуги, находящейся в интенсивном потоке газа при наличии внешних магнитных полей. Из теории «малого возмущения» условие устойчивости дуги имеет вид