Смекни!
smekni.com

Оптимальная система автоматического управления (стр. 1 из 7)

Федеральное агентство по образованию

ГОУ ВПО «Московский Государственный Открытый Университет»

Чебоксарский политехнический институт

Кафедра: Управление и информатика в технических системах

специальность 220201

Курсовая работа

Оптимальная система автоматического управления

Выполнил: студент V курса д/о

ФУИТС шифр: 604020

Белоусов А.В.

Проверил: пр. Изосимова Т.

Чебоксары 2008

Содержание

Введение

Задание

1. Анализ методов определения минимального, максимальногозначения функции без ограничения

1.1 Методы прямого поиска

1.2 Градиентные методы

1.3 Методы второго порядка

2. Нахождение экстремума функции без ограничения

2.1 Метод наискорейшего спуска

2.2 Метод сопряженных направлений

3. Анализ методов определения минимального, максимального значения функции при наличии ограничений

3.1 Методы возможных направлений

3.2 Методы проекции градиента

3.3 Методы линеаризации

3.4 Методы штрафов

4. Нахождение экстремума функции при наличии ограничения

4.1 Метод симплексных процедур

5. Синтез оптимальной по быстродействию системы с помощью принципа максимума Понтрягина

Звулючение

Список литературы

Приложение

Введение

В наиболее общем смысле теория оптимизации представляет собой совокупность фундаментальных математических результатов и численных методов, ориентированных на нахождение и идентификацию наилучших вариантов из множества альтернатив и позволяющих избежать полного перебора и оценивания возможных вариантов. Процесс оптимизации лежит в основе всей инженерной деятельности, поскольку классические функции инженера заключаются в том, чтобы, с одной стороны, проектировать новые, более эффективные, менее дорогостоящие технические системы и, с другой стороны, разрабатывать методы повышения качества функционирования существующих систем.

Эффективность оптимизационных методов, позволяющих осуществить выбор наилучшего варианта без непосредственной проверки всех возможных вариантов, тесно связана с широким использованием достижений в области математики путем реализации итеративных вычислительных схем, опирающихся на строго обоснованные логические процедуры и алгоритмы, на базе применения вычислительной техники. Поэтому для изложения методологических основ оптимизации требуется привлечение важнейших результатов теории матриц, элементов линейной алгебры и дифференциального исчисления, а также положений математического анализа. Математические понятия и конструкции используются не только для того, чтобы повысить уровень строгости представления материала, но и потому, что они составляют терминологическую базу изложения, которая позволяет упростить описание и определение структурных элементов рассматриваемых вычислительных процедур и облегчить их понимание.

Поскольку размерность инженерных задач, как правило, достаточно велика, а расчеты требуют значительного времени, оптимизационные методы ориентированы главным образом на реализацию с помощью ЭВМ.


Задание

Вариант 2

Дана несепарабельная функция двух переменных:

,

где

.

Дана начальная точка поиска -

, где
.

Получим функцию:

.

1) Найти безусловный экстремум функции f(x,y) методами:

-наискорейшего спуска;

-сопряженных направлений.

Точность вычислений:

/xi+1-xi/<0.01

/yi+1-yi/<0.01

/f(xi+1,yi+1)-f(xi,yi)/<0.01

2) Найти условный экстремум функции f(x,y) методом симплексных процедур при наличии следующих ограничений:


3) Выполнить синтез оптимальной по быстродействию системы с помощью принципа максимума Понтрягина (критерий по быстродействию), передаточная функция объекта имеет вид:

, где K=1, Т=1.

- разработать модель для данного типа ОСАУ;

- провести исследование ОСАУ с применением программного продукта

“20 SimPro 2.3”;

- снять переходные и импульсные характеристики.


1. Анализ методов определения минимального, максимальногозначения функции без ограничения

В данном разделе будет рассматриваться задача безусловной оптимизации, т.е. данная задача характеризуется тем, что минимум функции f: RmR ищется на всем пространстве:

f(x)  min, x  Rm.

Методы безусловной оптимизации функции многих переменных отличаются относительно высоким уровнем развития по сравнению с другими методами нелинейного программирования. Условно их можно разбить на три широких класса по типу используемой информации:

1) Методы прямого поиска, основанные на вычислении только значений целевой функции.

2) Градиентные методы, в которых используются точные значения первых производных f (x).

3) Методы второго порядка, в которых наряду с первыми производными используются также вторые производные функции f (x).

1.1 Методы прямого поиска

Здесь предполагается, что f (x) непрерывна и унимодальная. Если рассматриваемые методы применяются для анализа мультимодальных функций, то приходится ограничиваться идентификацией локальных минимумов. К особенностям этих методов можно отнести:

1) относительная простота соответствующих вычислительных процедур, которые быстро реализуются и легко корректируются;

2) не требуют явного выражения целевой функции в аналитическом виде;

3) может требовать более значительных затрат времени по сравнению с методами, основанными на производных.

Метод поиска по симплексу

Процедура симплексного метода базируется на регулярном симплексе. Регулярный симплекс в N-мерном пространстве представляет собой многогранник, образованный N+1 равностоящими друг от друга точками - вершинами. Так в задаче с двумя переменными симплексом является равносторонний треугольник, с тремя - тетраэдр.

Работа алгоритма симплексного поиска начинается с построения регулярного симплекса в пространстве независимых переменных и оценивания значений целевой функции в каждой из вершин симплекса. При этом отбрасывается вершина, которой соответствует наибольшее значение целевой функции.

Преимущества метода:

· сравнительная простота логической структуры метода и, соответственно, программы для ЭВМ;

· используется сравнительно небольшое число заранее установленных параметров;

· невысокий уровень требований к ЭВМ.

· алгоритм эффективен даже в тех случаях, когда ошибка вычисления значений целевой функции велика, т.к. при его реализации используют наибольшие значения функции в вершинах, а не меньшие.

Недостатки метода:

· возникает проблема масштабирования, поскольку все координаты вершин симплекса зависят от одного масштабного множителя. Чтобы избежать такого рода проблем в практических задачах, следует промасштабировать все переменные с тем, чтобы их значения были сравнимы по величине;

· алгоритм работает достаточно медленно, т.к. полученная на предыдущих итерациях информация не используется для ускорения поиска;

· не существует простого способа расширения симплекса. Требуется перерасчет значений целевой функции во всех точках образца.

Метод поиска Хука-Дживса

Процедура поиска Хука-Дживса представляет собой комбинацию "исследующего поиска" и "ускоряющего поиска по образцу".

Исследующий поиск ориентирован на выявление локального характера поведения целевой функции и определение направлений вдоль "оврагов". Для проведения исследующего поиска необходимо задать величину шага, которая может быть различной для разных координатных направлений и изменяться в процессе поиска. Поиск начинается в некоторой исходной точке. Если значение целевой функции в пробной точке не превышает значение функции в исходной точке, то шаг поиска рассматривается как успешный. В противном случае необходимо вернуться в предыдущую точку и сделать шаг в противоположное направление с последующей проверкой значения целевой функции. После перебора всех N координат исследующий поиск завершается. Полученную в результате точку называют "базовой точкой".

Поиск по образцу заключается в реализации единственного шага из полученной базовой точки xk вдоль прямой, соединяющей эту точку с предыдущей базовой точкой xk-1. Новая точка образца xk+1 определяется в соответствии с формулой

xk+1 = xk + (xk - xk-1).

Как только движение по образцу не приводит к уменьшению целевой функции, точка xk+1 фиксируется в качестве временной базовой точки и вновь проводится исследующий поиск. Если в результате получается точка с меньшим значением целевой функции, чем в точке xk, то она рассматривается как новая базовая точка xk+1.