Смекни!
smekni.com

Анализ и синтез механизмов (стр. 2 из 6)

5. Скорость средней точки второй группы Ассура D4 определяем через скорости крайних точек этой группы С и О3.

Скорость точки D4 относительно точки С:


Скорость точки D4 относительно точки О3:

Отрезок

представляет собой вектор скорости точки D4, решаем графически.

Центры тяжести весомых звеньев определяем по свойству подобия.

6. Пользуясь планом скорости, определяем истинные (абсолютные) значения скоростей точек механизма:

7. Определяем абсолютные величины угловых скоростей звеньев:

где lАВ= lАВ∙μl =89,38· 0,005 = 0,4469 м

1.2.2.2 Построение плана ускорения

Исходные данные: 1. Кинематическая схема механизма (1 лист)

2. Угловая скорость ведущего звена

3. План скоростей для заданного положения.

1. Абсолютное ускорение точки А на конце ведущего звена:

2. Масштабный коэффициент:

Длина вектора ускорения точки А1:

3. Ускорение средней точки первой группы Ассура – точки В2 определяем через ускорения крайних точек этой группы А и О2.

Ускорение точки В2 относительно точки А:

Ускорение точки В относительно точки О2:


Величина ускорения Кориолиса определяется по модулю формулой:

Длина вектора, изображающего ускорение Кориолиса на плане ускорений равна:

Для определения направления ускорения Кориолиса вектор относительной скорости

поворачиваем на 90о по направлению угловой скорости
.

Из конца вектора

проводим линию действия релятивного ускорения
параллельную звену АВ.

Решаем графически.

4. По свойству подобия находим на плане ускорения точку С, которая принадлежит звеньям 2 и 4, то есть является крайней точкой второй группы Ассура.

откуда:


5. Ускорение средней точки второй группы Ассура – точки D4 определяем через ускорения крайних точек этой группы C и О3, причем точка D4 принадлежит звену 4 и совпадает с точкой D5.

Ускорение точки D4 относительно точки С:

Ускорение точки D4 относительно точки О3:

Решаем графически.

Центры тяжести весомых звеньев определяем по свойству подобия

6. Пользуясь планом ускорений, определяем истинные (абсолютные) значения ускорений точек механизма:


7. Определяем абсолютные величины угловых ускорений звеньев:

На этом кинематическое исследование кривошипно-ползунного механизма завершено.

2. Силовой анализ плоско-рычажного механизма

2.1 Определение внешних сил

К звену 5 приложена сила полезного сопротивления FПС, направление которой указано на схеме.

Величина FПС = 1200 Н.

Масса звеньев:

где q = 10 – вес 1 метра длины звена, кг/м

li– максимальная длина звена, м.

Определяем массы звеньев:

Собственные моменты инерции звеньев относительно оси, проходящей через центр тяжести:

где

- масса звена, кг.

– длинна звена, м.

Определяем моменты инерции:


Определяем силы веса по формуле:

(Принимаем g=10 м/с2 – ускорение свободного падения)

Определяем силы инерции по формуле:

Определяем моменты пар сил инерции по формуле:


Определяем плечи переноса сил по формуле:

Направление внешних сил проставлено на кинематической схеме механизма (лист №1 графической части курсового проекта)

2.2 Определение внутренних сил

2.2.1 Вторая группа Ассура

Структурная группа 2 класса, 2 порядка, 2 модификации.

Изображаем эту группу отдельно. Действие отброшенных звеньев 3 и 0 заменяем силами реакций

и
.

В точке О3 на звено 5 действует сила реакции со стороны стойки –

, которая перпендикулярна СО3,но неизвестна по модулю и направлению.

В точке С на звено 4 действует сила реакции со стороны звена 2 –

, тк величина и направление не известно, раскладываем её на тангенсальную и нормальную.

Линия действия тангенсальной составляющей силы реакции перпендикулярна СD. Величину и направление находим из уравнения моментов сил относительно точки D.


При расчете величина

получилась со знаком (+), т.е. Направление силы выбрано верно.

Векторное уравнение сил, действующих на звенья 4 и 5:

Это векторное уравнение решаем графически, т.е. строим план сил.

Принимаем масштабный коэффициент:

Вектора сил будут равны:

Из плана сил находим:


2.2.2 Первая группа Ассура

Структурная группа 2 класса, 2 порядка, 3 модификации.

Изображаем эту группу отдельно. Действие отброшенных звеньев заменяем силами реакций.

В точке С на звено 2 действует сила реакции со стороны звена 4 –

, которая равна по модулю и противоположно направлена найденной ранее силе
, т.е.
.