5. Скорость средней точки второй группы Ассура D4 определяем через скорости крайних точек этой группы С и О3.
Скорость точки D4 относительно точки С:
Скорость точки D4 относительно точки О3:
Отрезок
Центры тяжести весомых звеньев определяем по свойству подобия.
6. Пользуясь планом скорости, определяем истинные (абсолютные) значения скоростей точек механизма:
7. Определяем абсолютные величины угловых скоростей звеньев:
где lАВ= lАВ∙μl =89,38· 0,005 = 0,4469 м
1.2.2.2 Построение плана ускорения
Исходные данные: 1. Кинематическая схема механизма (1 лист)
2. Угловая скорость ведущего звена
3. План скоростей для заданного положения.
1. Абсолютное ускорение точки А на конце ведущего звена:
2. Масштабный коэффициент:
Длина вектора ускорения точки А1:
3. Ускорение средней точки первой группы Ассура – точки В2 определяем через ускорения крайних точек этой группы А и О2.
Ускорение точки В2 относительно точки А:
Ускорение точки В относительно точки О2:
Величина ускорения Кориолиса определяется по модулю формулой:
Длина вектора, изображающего ускорение Кориолиса на плане ускорений равна:
Для определения направления ускорения Кориолиса вектор относительной скорости
Из конца вектора
Решаем графически.
4. По свойству подобия находим на плане ускорения точку С, которая принадлежит звеньям 2 и 4, то есть является крайней точкой второй группы Ассура.
откуда:
5. Ускорение средней точки второй группы Ассура – точки D4 определяем через ускорения крайних точек этой группы C и О3, причем точка D4 принадлежит звену 4 и совпадает с точкой D5.
Ускорение точки D4 относительно точки С:
Ускорение точки D4 относительно точки О3:
Решаем графически.
Центры тяжести весомых звеньев определяем по свойству подобия
6. Пользуясь планом ускорений, определяем истинные (абсолютные) значения ускорений точек механизма:
7. Определяем абсолютные величины угловых ускорений звеньев:
На этом кинематическое исследование кривошипно-ползунного механизма завершено.
2. Силовой анализ плоско-рычажного механизма
2.1 Определение внешних сил
К звену 5 приложена сила полезного сопротивления FПС, направление которой указано на схеме.
Величина FПС = 1200 Н.
Масса звеньев:
где q = 10 – вес 1 метра длины звена, кг/м
li– максимальная длина звена, м.
Определяем массы звеньев:
Собственные моменты инерции звеньев относительно оси, проходящей через центр тяжести:
где
Определяем моменты инерции:
Определяем силы веса по формуле:
(Принимаем g=10 м/с2 – ускорение свободного падения)
Определяем силы инерции по формуле:
Определяем моменты пар сил инерции по формуле:
Определяем плечи переноса сил по формуле:
Направление внешних сил проставлено на кинематической схеме механизма (лист №1 графической части курсового проекта)
2.2 Определение внутренних сил
2.2.1 Вторая группа Ассура
Структурная группа 2 класса, 2 порядка, 2 модификации.
Изображаем эту группу отдельно. Действие отброшенных звеньев 3 и 0 заменяем силами реакций
В точке О3 на звено 5 действует сила реакции со стороны стойки –
В точке С на звено 4 действует сила реакции со стороны звена 2 –
Линия действия тангенсальной составляющей силы реакции перпендикулярна СD. Величину и направление находим из уравнения моментов сил относительно точки D.
При расчете величина
Векторное уравнение сил, действующих на звенья 4 и 5:
Это векторное уравнение решаем графически, т.е. строим план сил.
Принимаем масштабный коэффициент:
Вектора сил будут равны:
Из плана сил находим:
2.2.2 Первая группа Ассура
Структурная группа 2 класса, 2 порядка, 3 модификации.
Изображаем эту группу отдельно. Действие отброшенных звеньев заменяем силами реакций.
В точке С на звено 2 действует сила реакции со стороны звена 4 –