Смекни!
smekni.com

Анализ методов улучшения жидкостекольных смесей (стр. 4 из 14)

Была проверена возможность регулирования степени прогрева стержней с помощью материалов с различными теплофизическими свойствами. Однако введение в смеси с жидким стеклом 20% чугунной стружки

, 10% окалины
, применение в качестве наполнителя хромомагнезита
и других высокотеплопроводных материалов, введение в смеси

Рис.4. Влияние толщины стенки отливки на условия нагрева стержней из смесей с жидким стеклом:

1— хромомагнезитовой; 2 — кварцевого песка и 10% асбеста;

3 — кварцевого песка и 20% чугунной стружки.

материалов (асбеста), тормозящих отвод тепла

, не позволило существенно изменить температуру в центре стержней (рис. 4).

Для решения второй задачи необходимо было установить причины, определяющие зависимость работы, затрачиваемой на выбивку стержней, от температуры их предварительного нагрева.

Существенное различие работы, затраченной на выбивку высушенных образцов (рис. 3) в области первого максимума (исходное состояние), объясняется разли­чием природы пленок, связывающих зерна кварцевого песка. Небольшое увеличение прочности образцов, продутых углекислым газом и нагретых до 200° C, закономерно и объясняется краткой продолжительностью (45 сек) продувки образцов углекислым газом.

При последующем нагреве образцов до температур 400–600° C наблюдается значительное уменьшение работы, затрачивае­мой на выбивку образцов.

Важно отметить, что величина работы в этом интервале тем­ператур является минимальной и практически одинаковой как для образцов, предварительно высушенных, так и для образцов продутых CO

. Пленка жидкого стекла обладает чрезвычайно высокой адгезией к кварцевым зернам. Это особенно сильно проявляется в условиях высоких температур, когда происходит химическое взаимодействие между щелочным силикатом натрия и поверхностью кварцевых зерен.

Учитывая когезионный тип разрушения смесей с жидким стеклом, изменение прочностных свойств смесей в условиях их нагрева и последующего охлаждения можно объяснить измене­ниями, происходящими в пленке жидкого стекла.

Вследствие различных температурных коэффициентов объем­ного и линейного расширения стекловидного силиката натрия и кварцевого песка при повторном нагреве и охлаждении высушен­ных образцов в пленке, склеившей зерна наполнителя, возникают напряжения, приводящие к образованию трещин, нарушающих её сплошность и снижающих прочность образцов на удар.

При нагреве образцов до 600° C и последующем охлаждении к напряжениям, возникающим вследствие различия температур­ных коэффициентов расширения пленки и зерна, добавляются напряжения, возникающие в результате модификации изменений кварца (переход α-кварца в β-кварц при 575° С).

Снижение величины A и образование первого минимума объясняется также полной потерей влаги гелем кремневой кислоты и дисиликатом натрия в интервале температур примерно до 350–400° С.

Эти данные подтверждаются термограммами высушенных при: 200° C и продутых углекислым газом смесей, содержащих 6% жидкого стекла.

Здесь, однако, имеется в виду влияние не собственно потери влаги, а воздействия этого процесса на возникновение в пленке, связывающей зерна кварца, напряжении, приводящих к обра­зованию в ней трещин, резко снижающих общую прочность смеси.

Наконец, следует учесть, что напряжения в пленках будут тем выше, чем больше будет перепад между температурой нагрева и температурой последующего охлаждения. Влияние этих фак­торов на условия выбивки стержней и подтверждение превали­рующего значения напряжений, возникающих в пленках и при­водящих к падению величины A, находим экспериментально. Полученные данные (рис. 5) ясно показывают, что при повторном нагреве и охлаждении прочность образцов резко падает.

Очевидно, что стекловидная пленка, содержащая в основном гидратированный дисиликат натрия, будет значительно более хрупкой, чем пленка, состоя­щая в основном из геля крем­невой кислоты. Последняя, особенно в начальных условиях, будет обладать эластичностью и способностью частично релаксировать возникающие нап­ряжения. Поэтому прочность предварительно высушенных об­разцов при повторном нагреве и охлаждении падает гораздо более резко, чем у образцов, предварительно продутых угле­кислым газом.

Таким образом, в случае высушенных и в случае проду­тых CO

образцов при их наг­реве до 400–600° C и последую­щем охлаждении в результате возникающих напряжений, при­водящих к образованию в плен­ках трещин, работа, затрачивае­мая на выбивку, оказывается минимальной.

Переходя к рассмотрению одного из главных вопросов – причин образования второго максимума, прежде всего следует отметить чрезвычайно быстрое увеличение работы, затрачиваемой на выбивку образцов, предварительно нагретых до 800° С. Столь резкое возрастание прочности при нагреве образцов до 800° С свидетельствует о том, что примерно при этой температуре про­исходит коренное изменение условий склеивания кварцевых зёрен наполнителя.

Причина образования второго максимума становится очевид­ной из рассмотрения двойной диаграммы состояния Na

O – SiO
(рис.6)

При нагреве жидкого стекла, обычно применяемых модулей, жидкая фаза начинает появляться при температуре 795° C, а при нагреве до 850° C (для модуля, равного 2,5) образуется полностью жидкий расплав.

Образовавшаяся жидкая фаза силикатного расплава обволакивает зерна кварцевого песка, «залечивает» появившиеся ранее трещины и при последующем охлаждении сооб­щает смеси высокую прочность, что приводит к значительному увеличению работы, затрачиваемой на выбивку смесей. Этот процесс происходит как в высушенных, так и продутых CO

образцах. Однако, если в высушенных смесях происходит простое расплавление уже ранее образовавшегося силиката натрия, то в смесях продутых CO
образуется расплав из самостоятельно существующих компонентов — главным образом NaHCO
и SiO
, получившихся в результате разложения жидкого стекла при про­дувании смеси углекислым газом. Это, по-видимому, является причиной меньшей величины второго максимума в образцах, продутых CO
, так как условия образования расплава из отдель­ных составляющих в тонкой пленке связующего не могут считаться благоприятными. Подтверждением такого предположения яв­ляются опыты (рис. 7), проведенные при заливке стержней сталью 30Л. Они подтвердили общую

Рис. 6. Диаграмма состояния системы Na

O – SiO
.

закономерность — ярко выраженный максимум работы, затраченной на выбивку стерж­ней, прогретых до температуры примерно 800°С.
Рис. 7.Работа, затраченная на выбивку из отливок стержней: 1—высушенных при 200° C; 2 — продутых CO
.

Вследствие значитель­ного воздействия на стер­жень тепла залитого ме­талла, малой теплопровод­ности смеси и очень мед­ленного охлаждения стер­жней процессы образова­ния жидкой фазы в плен­ках связующего материала в данном случае протекают более полно, чем при испы­таниях образцов. Поэтому в смесях, продутых CO

, при этом полностью осуще­ствляется процесс образо­вания жидкой фазы, вслед­ствие чего наблюдается почти одинаковый ход кри­вых, характеризующих работу, затраченную на выбивку стер­жней, высушенных и продутых CO
.

Таким образом, при нагреве смесей до 800°C образуется жид­кий расплав, который энергично взаимодействует с кварцевым песком, растворяя последний, в результате чего четко выражен­ная граница раздела пленки и зерна стирается и образуется сплошной монолит, обладающий большой прочностью. В этих условиях появляется «второй максимум», резко затрудняющий выбивку стержней из отливок.

Рассмотрим причины снижения величины A при нагреве смесей до более высоких температур и условия образования «второго минимума».

При нагреве смесей до температур, превышающих 800° C, взаимодействие силикатного расплава с кремнеземом песка усили­вается. Как известно, скорость диффузии возрастает по мере по­вышения температуры и уменьшения вязкости среды. Поэтому при высоких температурах диффузия SiO

от поверхности растворения в расплав значительно возрастает и в целом процесс растворения кремнезема в силикатном расплаве ускоряется. В результате растворения содержание SiO
в расплаве непрерывно увеличи­вается вплоть до предела растворимости при данной температуре согласно диаграмме состояния Na
O–SiO
. После достижения предела растворимости этот процесс прекращается.