Крутизна нарастания силы раздражителя. Аккомодация.
Величина порога раздражения зависит не только от длительности действующего стимула, но и от крутизны нарастания. При уменьшении крутизны нарастания раздражителя ниже определённой величины, возбуждения не возникает, до какой бы силы мы не довели раздражитель. Это происходит потому, что в месте нанесения раздражителя постоянно повышается порог, и до какой бы величины не довели раздражитель, возбуждения не возникает. Такое явление-приспособление возбудимого образования к медленно нарастающей силе раздражителя назыв-ся аккомодацией.
Разные возбудимые образования имеют разную скорость аккомодации, поэтому чем выше скорость аккомодации, тем крутизна нарастания раздражителя выше.
Этот же закон работает не только для электростимуляторов, но и для других (химических, механических раздражителей/стимуляторов).
Полярный закон раздражения.
Это закон впервые был открыт П.Ф. Флюгером. Он установил, что постоянный ток обладает полярным действием на возбудимую ткань. Это выражается в том, что в момент замыкания цепи, возбуждение возникает только под катодом, а в момент размыкания – под анодом. Причем под анодом, при размыкании цепи, возбуждение значительно выше, чем при замыкании под катодом. Это обусловлено тем, что положительно заряженный электрод (анод) вызывает гиперполяризацию мембраны, когда поверхности касаются катода (отрицательно заряженного), он вызывает деполяризацию.
Закон «всё, или ничего»
Согласно этому закону, раздражитель подпороговой силы не вызывает возбуждения (ничего); при пороговом раздражении, возбуждение принимает максимальную величину (всё). Дальнейшёё увеличение силы раздражителя не усиливает возбуждения.
Долгое время полагали, что этот закон является общим принципом возбудимой ткани. При этом считали, что «ничего» - это полное отсутствие возбуждения, а «всё», - это полное проявление возбудимого образования, т.е. его способность к возбуждению.
Однако, с помощью микроэлектронных исследований было доказано, что даже при действии подпорогового раздражителя в возбудимом образовании происходит перераспределения ионов между наружной и внутренней поверхностями мембраны. Если с помощью фармакологического препарата повысить проницаемость мембраны для ионов натрия или снизить проницаемость для ионов калия, то амплитуда потенциалов действия повышается. Таким образом, можно заключить, что этот закон должен рассматриваться лишь, как правило, характеризующее особенности возбудимого образования.
Проведение возбуждения. Возбудимость.
В демиелинизированных и миелинезированных волокнах возбуждение передается по-разному, это обусловлено анатомическими особенностями данных волокон. Миелинизированные нервные волокна имеют перехваты Ранвье. Передача сигналов через такие волокна осуществляется с помощью перехватов Ранвье. Сигнал проскакивает через миелинизированные участки, и тем самым, проведение возбуждения по ним происходит быстрее, чем в немиелинизированных участках, возврат импульса обратно невозможен, поскольку в предыдущем перехвате повышается порог раздражений.
Возбудимость – это способность такни на раздражение или возбуждение и следовательно, возникновением потенциала действия. Чем порог раздражения выше, тем возбуждение выше, и наоборот.
Величина порога раздражения определяется соотношением двух величин: - величиной (потенциалом покоя)
- величиной Eк – той критической величиной, до которой этот потенциал должен быть доведён для возникновения потенциала действия. Чем ближе к своей критической величине -Eк, тем меньшую силу должен иметь раздражимый ток для того, чтобы вызвать потенциал действия.
Минимальный сдвиг минимального потенциала покоя, необходимый для того, чтобы достиг критической величины, называется порогом деполяризации.
Лабильность нервной ткани
Понятие лабильности впервые было введено в физиологию Введенским. Это понятие характеризует физико-химические свойства возбудимого образования. Под лабильности понимают способность возбудимого образования усваивать определённое количество импульсов в единицу времени. Например: при стимуляции нервного волокна, с частотой 400 импульсов в секунду, по нервному волокну будет проводиться каждый импульс. При увеличении стимуляции до 700 импульсов в секунду, будет проводиться каждый второй импульс. При еще большей частоте (800 импульсов), будет проводиться каждый третий импульс. Однако при повышенной частоте стимуляции лабильность нервной ткани может повыситься и при частоте 700 импульсов вначале будет проводиться каждый второй, а затем каждый импульс. Однако, повышение лабильности не безгранично, и через некоторое время может снизиться проводимость возбудимого образования.
Физиология нервной клетки
Нервная ткань представляет собой гетерогенную структуру. Здесь имеются основные клеточные элементы – различные типы нейронов, глиоцитов, а также нервные волокна.
В сером веществе ЦНС, в основном, клеточные структуры и немиелинизированные нервные волокна.
В белом веществе ЦНС находятся миелинизированные нервные волокна.
Основные физиологические функции в ЦНС выполняют нервные клетки или нейроны. Нейроны могут быть собраны в ядра или рассредоточены в ЦНС. Они могут образовывать слои.
В процессе онтогенеза нейроны развиваются из нейробластов.
Нейрон – это сложноустроенная специализированная клетка, которая воспринимает раздражение, перерабатывает информацию и передаёт её другим структурам.
Нервная клетка состоит из 3-элементов:
- сомо (тело нервной клетки)
- аксон
- дендрит
Нервная клетка воспринимает сигналы через дендриты и тело, а передает сигнал через аксон. Нервная клетка имеет сотни входов и один выход.
Тело нейрона содержит плазму, ядро, органоиды и специализированные структуры, присущие только нейронам.
Аксон в нервной клетки бывает только один. Его длина составляет от нескольких сантиметров до нескольких метров. Диаметр аксона по всей длине почти одинаков. От аксона отходят боковые коллатерали, которые на концах дают множество разветвлений.
У нейрона много дендритов, они коротки, сильно ветвятся и словно продолжают тело нейрона. Отходят от тела и широким концом и неожиданно суживаются к концу.
По морфологическим характеристикам нейроны классифицируются:
– мультиполярные
– псевдоуниполярные
– псевдонейроны
По дендритам возбуждение передаётся только к телу нейрона.
Типичным примером мультиполярного нейрона может служить мотонейрон вентролатерального ядра спинного мозга. Аксоны этих нейронов могут достигать до 1,5 метров. Иннервируют мышцы конечностей. Их дендриты сильно ветвятся в сером веществе спинного мозга и соприкасаются с отростками других нейронов.
Типичным примером биполярного нейрона могут служить чувствительные клетки в органах обоняния, сетчатке глаза.
Примером псевдонейрона могут служить нейроны спинномозговых ганглиев.
Ядро нервной клетки обычно округлое. Находится в центре нейрона. В кариоплазме обнаружено небольшое количество хроматиновых зёрен, в них содержатся хромосомы. Чаще обнаруживают в ядре одно или несколько ядрышек. Кареолемма имеет два слоя. В некоторых местах эти слои соприкасаются и образуют поры, через эти поры осуществляется транспорт веществ из ядра в цитоплазму и обратно. Основная особенность ядра нейрона – это отсутствие митотических процессов.
Цитоплазма нейрона представляет собой сложноустроенную структуру, функции которой во многим сходны с другими клетками. Однако в цитоплазме имеются и специальные структуры, которые присущи только нейрону.
Цитоплазма нейрона имеет следующие структуры:
эндоплазматическая сеть
- рибосомы
- митохондрии
- пластинчатый комплекс
- центросома
- лизосомы
- нейрофибриллы
- нейротугулы
- Нейролемма кроме обычного для всех типов клеток строения, обладает особенностями, присущими только нейрону:
- Наличие специфических ионных каналов, которые обеспечивают перемещение ионов калия, натрия, хлора, кальция внутрь клетки и за её пределы. Этим обеспечивается одно из основных свойств нейрона - способностью к возбуждению. Этим обусловлены также процессы реполяризации и деполяризации, проведение нервного импульса по нервному волокну и передача сигнала от одной нервной клетки к другой.
- В цитоплазме нейронов хорошо развиты клеточные органоиды, это обусловлено синтетической активностью нейрона.
- В нейронах, вокруг ядра, располагается аппарат Гольджи, он в виде корзинки охватывает ядро.
- Специфическими структурами нервной клетки является тигроидное вещество и нейрофиблриллы. Тигроидное вещество (вещество Нисля), сконцентрировано в теле нейрона и в основании дендритов. В световом микроскопе тигроид представляет собой глыбки и зерна. Они придают цитоплазме пятнистый вид. Тигроидное вещество принадлежит эндоплазматической сети, здесь формируются канальца. На шероховатой эндоплазматической сети нейрона содержатся рибосомы, при функциональных нагрузках, в цитоплазме нейрона резко увеличивается количество тигроидного вещества, что свидетельствует о высокой синтетической активности нервной клетки. При функциональной перегрузке нейрона и его истощении, количество тигроида резко уменьшается, причем, вначале исчезает тигроид дендритов, в затем, в телах нейронов, все это даёт основание оценивать состояние нейрона по количеству тигроида.