Статистика как таковая не создает новой научной информации. Эта информация либо содержится, либо не содержится (к сожалению, и так бывает) в полученных исследователем материалах. Назначение статистики состоит в том, чтобы извлечь из этих материалов больше полезной информации. Вместе с тем статистика показывает, что эта информация не случайна и что добытые данные имеют определенную и значимую вероятность.
Статистические методы раскрывают связи между изучаемыми явлениями. Однако необходимо твердо знать, что как бы ни была высока вероятность таких связей, они не дают права исследователю признать их причинно-следственными отношениями. Статистика, как о ней пишут известные английские ученые Д.Э. Юл и М.Дж. Кендэл (Теория статистики. М., 1960. С. 18—19.), «вынуждена принимать к анализу данные, подверженные влиянию множества причин». Статистика, например, утверждает, что существует значимая связь между двигательной скоростью и игрой в теннис. Но отсюда еще не вытекает, будто двигательная скорость и есть причина успешной игры. Нельзя, по крайней мере в некоторых случаях, исключить и того, что сама двигательная скорость явилась следствием успешной игры.
Чтобы подтвердить или отвергнуть существование причинно-следственных отношений, исследователю зачастую приходится продумывать целые серии экспериментов. Если они будут правильно построены и проведены, то статистика поможет извлечь из результатов этих экспериментов информацию, которая необходима исследователю, чтобы либо обосновать и подтвердить свою гипотезу, либо признать ее недоказанной.
Вот что нужно знать при использовании статистики.
Итак, были перечислены типы задач, с которыми чаще всего встречаются психологи. Теперь перейдем к изложению конкретных статистических методов, которые способствуют успешному решению перечисленных задач.
Первый тип задач. Статистические методы, примеры их применения для принятия решения.
Допустим, школьному психологу нужно представить краткую информацию о развитии психомоторных функций учащихся 6-х классов, в которых обучается 50 учеников. В процессе выполнения своей программы психолог провел диагностическое изучение двигательной скорости, применив методику, которая была описана выше (С. 240).
Для реализации своей программы психологу надлежало получить количественные характеристики, свидетельствующие о состоянии изучаемой функции — ее центральной тенденции, величины, показывающей размах- колебаний, в пределах которого находятся все данные отдельных учеников, и то, как распределяются эти данные.
Какими методами вести обработку — параметрическими или непараметрическими? Визуальное ознакомление с полученными данными показывает, что возможно применение параметрического метода, т.е. будут вычислены среднее арифметическое, выражающее центральную тенденцию, и среднее квадратическое отклонение, показывающее размах и особенности варьирования экспериментальных результатов.
Нельзя ограничиться вычислением только среднего арифметического, так как оно не дает полных сведений об изучаемой выборке. Вот пример. В одном купе вагона поместилась бабушка 60 лет с четырьмя внуками: 4 лет, двое по 5 и 6 лет. Среднее арифметическое возраста всех пассажиров этого купе 80/5 = 16.
В другом, купе расположилась компания молодежи: двое 15-летних, 16-летний и двое 17-летних. Средний возраст пассажиров этого купе также равен 16. Таким образом, по средним арифметическим пассажиры этих купе как бы и не различаются. Но если обратиться к особенностям варьирования, то сразу можно установить, что в одном купе возраст пассажиров варьирует в пределах 56 единиц, а во втором — в пределах 2.
Для вычисления среднего арифметического применяется формула:
а для среднего квадратического отклонения формула:
В этих формулах х означает среднее арифметическое, х — каждую величину изучаемого ряда, Z — сумму; s — среднее квадратическое отклонение; п — число членов изучаемого ряда.Вернемся к опыту с проверкой двигательной скорости учащихся (С. 244).
В опытах участвовали 50 испытуемых. Каждый из них выполнил по 25 проб, по 1 минуте каждая. Вычислена средняя каждого испытуемого. Полученный ряд упорядочен и все индивидуальные результаты представлены в последовательности от меньшего к большему:
85— 93— 93— 99— 101—105—109—110—111—115—
115— 116— 116— 117— 117— 117— 118— 119— 121 —121 —
122 — 124 — 124 — 124 — 124 — 125 — 125 — 125 — 127 —127 —
127 — 127 — 127 — 128 — 130 — 131 — 132 — 132 — 133 — 134 —
134 — 135 — 138 — 138 — 140 — 143 — 144 — 146 — 150 — 158
Для дальнейшей обработки удобнее эти первичные данные соединить в группы, тогда отчетливее выступает присущее данному ряду распределение величин и их численностей. Отчасти упрощается и вычисление среднего арифметического и среднего квадратического отклонения. Этим искупается несущественное искажение/ информации, неизбежное при вычислениях на сгруппированные данных.
При выборе группового интервала следует принять во внимание такие соображения. Если ряд не очень велик, например содержит до 100 элементов, то и число групп не должно быть очень велико, например порядка 10—12. Желательно, чтобы при группировании начальная величина — при соблюдении последовательности от меньшей величины к большей — была меньше самой меньшей величины ряда, а самая большая — больше самой большой величины изучаемого ряда. Если ряд, как в данном случае, начинается с 85, группирование нужно начать с меньшей величины, а поскольку ряд завершается числом 158, то и группирование должно завершаться большей величиной. В ряду, который нами изучается, с учетом высказанных соображений можно выбрать групповой интервал в 9 единиц и произвести разбиение ряда на группы, начав с 83. Тогда последняя группа будет завершаться величиной, превышающей значение последней величины ряда (т.е. 158). Число групп будет равно 9 (табл. 1).
Вычисление среднего арифметического и среднего квадратическо-го отклонения.
Таблица 1
Группы | Средние значения | Результат разноски | Итоги разноски | f•x | x – x | (х -x)2 | f•(x -х)2 |
83—91 | 87 | / | 1 | 87 | 36 | 1296 | 1296 |
92—100 | 96 | u | 3 | 288 | 27 | 729 | 2187 |
101—109 | 105 | LJ | 3 | 315 | 18 | 324 | 972 |
110—118 | 114 | 10 | 1140 | 9 | 81 | 810 | |
119—127 | 123 | 1300/ | 16 | 1968 | 0 | 0 | 0 |
128—136 | 132 | Ш | 9 | 1188 | 9 | 81 | 729 |
137—145 | 141 | Я | 5 | 705 | 18 | 324 | 1620 |
146—154 | 150 | L | 2 | 300 | 27 | 729 | 1458 |
155—163 | 159 | / | 1 | 159 | 36 | 1296 | 1296 |
n = 50 | Σf•x= 6150 | Σf•(x -х)2= =10368 |
1-й столбец — группы, полученные после разбиения изучаемого ряда.
2-й столбец — средние значения каждой группы; этот столбец показывает, в каком диапазоне варьируют величины изучаемого ряда, т.е. х.
3-й столбец показывает результаты «ручной» разноски величин ряда или иксов: каждая величина занесена в соответствующую ее значению группу в виде черточки.
4-й столбец — это итог подсчета результатов разноски.
5-й столбец показывает, сколько раз встречалась каждая величина ряда — это произведение величин второго столбца на величины 4-го столбца по строчкам. Итоги 4-го и 5-го столбцов дают суммы, необходимые для вычисления среднего арифметического.
6-й столбец показывает разность среднего арифметического и значения x по каждой группе.7-й столбец — квадрат этих разностей.
8-й столбец показывает, сколько раз встречался каждый квадрат разности; суммирование величин этого столбца дает итог, необходимый для вычисления среднего квадратического отклонения.
В заголовках 5-го и 8-го столбцов указывается, насколько часто встречается та или другая величина. Частота обозначается буквой f (от английского слова frequency).
Включение буквы f, означающей, насколько часто встречалась та или другая величина, ничего не изменяет в формулах среднего арифметического и среднего квадратического отклонения.
Поэтому формулы
вполне тождественны.
Рис.2
Остается показать, как вычисляются по формулам среднее арифметическое и среднее квадратическое отклонение. Обратимся к величинам, полученным в таблице:
x = 6150 : 50 = 123. При составлении таблицы это число было заранее вычислено, без него нельзя было бы получить числовые значения 6, 7, 8-го столбцов таблицы.