Смекни!
smekni.com

Нормы и интерпретация результатов теста (стр. 3 из 12)

Статистика как таковая не создает новой научной информации. Эта информация либо содержится, либо не содержится (к сожале­нию, и так бывает) в полученных исследователем материалах. На­значение статистики состоит в том, чтобы извлечь из этих материа­лов больше полезной информации. Вместе с тем статистика показы­вает, что эта информация не случайна и что добытые данные имеют определенную и значимую вероятность.

Статистические методы раскрывают связи между изучаемыми явле­ниями. Однако необходимо твердо знать, что как бы ни была высока вероятность таких связей, они не дают права исследователю признать их причинно-следственными отношениями. Статистика, как о ней пи­шут известные английские ученые Д.Э. Юл и М.Дж. Кендэл (Теория статистики. М., 1960. С. 18—19.), «вынуждена принимать к анали­зу данные, подверженные влиянию множества причин». Статистика, например, утверждает, что существует значимая связь между дви­гательной скоростью и игрой в теннис. Но отсюда еще не вытекает, будто двигательная скорость и есть причина успешной игры. Нель­зя, по крайней мере в некоторых случаях, исключить и того, что сама двигательная скорость явилась следствием успешной игры.

Чтобы подтвердить или отвергнуть существование причинно-следственных отношений, исследователю зачастую приходится про­думывать целые серии экспериментов. Если они будут правильно построены и проведены, то статистика поможет извлечь из резуль­татов этих экспериментов информацию, которая необходима иссле­дователю, чтобы либо обосновать и подтвердить свою гипотезу, ли­бо признать ее недоказанной.

Вот что нужно знать при использовании статистики.

Итак, были перечислены типы задач, с которыми чаще всего встречаются психологи. Теперь перейдем к изложе­нию конкретных статистических методов, которые способ­ствуют успешному решению перечисленных задач.

Первый тип задач. Статистические методы, примеры их при­менения для принятия решения.

Допустим, школьному психологу нужно представить краткую ин­формацию о развитии психомоторных функций учащихся 6-х классов, в которых обучается 50 учеников. В процессе выполнения своей про­граммы психолог провел диагностическое изучение двигательной ско­рости, применив методику, которая была описана выше (С. 240).

Для реализации своей программы психологу надлежало получить количественные характеристики, свидетельствующие о состоянии изучаемой функции — ее центральной тенденции, величины, пока­зывающей размах- колебаний, в пределах которого находятся все данные отдельных учеников, и то, как распределяются эти данные.

Какими методами вести обработку — параметрическими или непара­метрическими? Визуальное ознакомление с полученными данными по­казывает, что возможно применение параметрического метода, т.е. бу­дут вычислены среднее арифметическое, выражающее центральную тенденцию, и среднее квадратическое отклонение, показывающее раз­мах и особенности варьирования экспериментальных результатов.

Нельзя ограничиться вычислением только среднего арифметиче­ского, так как оно не дает полных сведений об изучаемой выборке. Вот пример. В одном купе вагона поместилась бабушка 60 лет с че­тырьмя внуками: 4 лет, двое по 5 и 6 лет. Среднее арифметическое возраста всех пассажиров этого купе 80/5 = 16.

В другом, купе расположилась компания молодежи: двое 15-летних, 16-летний и двое 17-летних. Средний возраст пассажиров этого купе также равен 16. Таким образом, по средним арифмети­ческим пассажиры этих купе как бы и не различаются. Но если об­ратиться к особенностям варьирования, то сразу можно установить, что в одном купе возраст пассажиров варьирует в пределах 56 еди­ниц, а во втором — в пределах 2.

Для вычисления среднего арифметического применяется формула:

а для среднего квадратического отклонения формула:

В этих формулах х означает среднее арифметическое, х — каж­дую величину изучаемого ряда, Z — сумму; s — среднее квадрати­ческое отклонение; п — число членов изучаемого ряда.

Вернемся к опыту с проверкой двигательной скорости учащихся (С. 244).

В опытах участвовали 50 испытуемых. Каждый из них выполнил по 25 проб, по 1 минуте каждая. Вычислена средняя каждого испы­туемого. Полученный ряд упорядочен и все индивидуальные резуль­таты представлены в последовательности от меньшего к большему:

85— 93— 93— 99— 101—105—109—110—111—115—

115— 116— 116— 117— 117— 117— 118— 119— 121 —121 —

122 — 124 — 124 — 124 — 124 — 125 — 125 — 125 — 127 —127 —

127 — 127 — 127 — 128 — 130 — 131 — 132 — 132 — 133 — 134 —

134 — 135 — 138 — 138 — 140 — 143 — 144 — 146 — 150 — 158

Для дальнейшей обработки удобнее эти первичные данные со­единить в группы, тогда отчетливее выступает присущее данному ряду распределение величин и их численностей. Отчасти упрощается и вычисление среднего арифметического и среднего квадратического отклонения. Этим искупается несущественное искажение/ информации, неизбежное при вычислениях на сгруппированные данных.

При выборе группового интервала следует принять во внимание такие соображения. Если ряд не очень велик, например содержит до 100 элементов, то и число групп не должно быть очень велико, например порядка 10—12. Желательно, чтобы при группировании начальная величина — при соблюдении последовательности от меньшей величины к большей — была меньше самой меньшей ве­личины ряда, а самая большая — больше самой большой величины изучаемого ряда. Если ряд, как в данном случае, начинается с 85, группирование нужно начать с меньшей величины, а поскольку ряд за­вершается числом 158, то и группирование должно завершаться большей величиной. В ряду, который нами изучается, с учетом высказанных со­ображений можно выбрать групповой интервал в 9 единиц и произвести разбиение ряда на группы, начав с 83. Тогда последняя группа будет за­вершаться величиной, превышающей значение последней величины ряда (т.е. 158). Число групп будет равно 9 (табл. 1).

Вычисление среднего арифметического и среднего квадратическо-го отклонения.

Таблица 1

Группы Средние значе­ния Резуль­тат раз­носки Итоги разнос­ки f•x
x – x
(х -x)2
f•(x -х)2
83—91 87
/
1 87 36 1296 1296
92—100 96 u 3 288 27 729 2187
101—109 105 LJ 3 315 18 324 972
110—118 114 QQ 10 1140 9 81 810
119—127 123 1300/ 16 1968 0 0 0
128—136 132 Ш 9 1188 9 81 729
137—145 141 Я 5 705 18 324 1620
146—154 150 L 2 300 27 729 1458
155—163 159 / 1 159 36 1296 1296

n = 50

Σfx= 6150
Σf•(x -х)2= =10368

1-й столбец — группы, полученные после разбиения изучаемого ряда.

2-й столбец — средние значения каждой группы; этот столбец показывает, в каком диапазоне варьируют величины изучаемого ря­да, т.е. х.

3-й столбец показывает результаты «ручной» разноски величин ряда или иксов: каждая величина занесена в соответствующую ее значению группу в виде черточки.

4-й столбец — это итог подсчета результатов разноски.

5-й столбец показывает, сколько раз встречалась каждая величи­на ряда — это произведение величин второго столбца на величины 4-го столбца по строчкам. Итоги 4-го и 5-го столбцов дают суммы, необходимые для вычисления среднего арифметического.

6-й столбец показывает разность среднего арифметического и значения x по каждой группе.

7-й столбец — квадрат этих разностей.

8-й столбец показывает, сколько раз встречался каждый квадрат разности; суммирование величин этого столбца дает итог, необхо­димый для вычисления среднего квадратического отклонения.

В заголовках 5-го и 8-го столбцов указывается, насколько часто встречается та или другая величина. Частота обозначается буквой f (от английского слова frequency).

Включение буквы f, означающей, насколько часто встречалась та или другая величина, ничего не изменяет в формулах среднего арифметического и среднего квадратического отклонения.

Поэтому формулы

вполне тождественны.

Рис.2

Остается показать, как вы­числяются по формулам сред­нее арифметическое и среднее квадратическое отклонение. Обратимся к величинам, полу­ченным в таблице:

x = 6150 : 50 = 123. При составлении таблицы это число было заранее вычислено, без него нельзя было бы полу­чить числовые значения 6, 7, 8-го столбцов таблицы.