Смекни!
smekni.com

Нормы и интерпретация результатов теста (стр. 4 из 12)

При обработке изучаемого ряда оказалось возможным примене­ние параметрического метода, так как визуально в этом ряду рас­пределение численностей приближается к нормальному. Это под­тверждается и графиком (рис. 2, с. 251).

Нормальное распределение обладает некоторыми весьма полезными для исследователя свойствами. Так, в границах x ± s находится при­мерно 68% всего ряда или всей выборки, в границах х ± 2s — пример­но 95%, а в границах x ± 3s — 97,7% выборки. В практике иссле­дований часто берут границы — x ±2/3s. В этих границах при нор­мальном распределении будут находиться 50% выборки; распреде­ление это симметрично, поэтому 25% окажутся ниже, а 25% выше границ x ±2/3s. Все эти расчеты не требуют никакой дополни­тельной проверки при условии, что изучаемый ряд имеет нор­мальное распределение, а число элементов в нем велико, поряд­ка нескольких сотен или тысяч. Для рядов, которые распределе­ны нормально или имеют распределение, мало отличающееся от нормального, вычисляется коэффициент вариации по такой фор­муле:

В примере, который был рассмотрен выше,

V= (100-14,4)/123 = 11,7.

Выполнив все эти вычисления, психолог может представить инфор­мацию об изучении двигательной скорости с помощью примененной методики в 6-х классах. Согласно результатам изучения в 6-х классах получены: среднее арифметическое — 123; среднее квадратическое от­клонение — 14,4; коэффициент вариативности — 11,7.

Непараметрические методы. Ранжирование, медиана, квартиль. Далеко не все материалы, получаемые в психологиче­ских исследованиях, подлежат обработке параметрическими мето­дами. Если после ознакомления с изучаемым рядом исследователь убеждается в том, что этот ряд не имеет свойств нормального рас­пределения, ему остается перейти на методы непараметрической статистики. С их помощью могут быть получены и центральная тенденция изучаемого ряда — медиана — и величина, позволяющая судить о диапазоне варьирования и о строении изучаемого ряда — квартильное отклонение.

Вот пример. После диагностических испытаний уровня умствен­ного развития учеников 6-го класса полученные данные были упо­рядочены, т.е. расположены в последовательности от меньшей ве­личины к большей. Испытания проходили 18 учащихся (табл. 2).

Таблица 2

Учащиеся Баллы Ранги (R) Учащиеся Баллы Ранги (R)
А 25 1 К 68 10
Б 28 2 Л 69 11,5
В 39 4 М 69 11,5
Г 39 4 Н 70 14,5
Д 39 4 О 70 14,5
Е 45 6 П 70 14,5
Ж 50 7 Р 70 14,5
3 52 8,5 С 74 17,5
И 52 8,5 Т 74 17,5

Примечание. Буквами обозначены учащиеся, числами — полученные ими баллы по тесту.

Процедура ранжирования состоит в следующем. Все числа ряда в их последовательности получают по своим. порядковым местам присваи­ваемые им ранги. Если какие-нибудь числа повторяются, то всем по­вторяющимся числам присваивается один и тот же ранг — средний из общей суммы занятых ими ранговых мест. Так, числу 28 в изучаемом ряду присвоен ранг 2. Затем следуют трижды повторяющиеся числа 39. На них приходятся занятые ими ранговые места 3, 4, 5. Поэтому этим числам присваивается один и тот же средний ранг, в дан­ном случае — 4. Поскольку места до 5-го включительно заняты, то следующее число получает ранг 6 и т.д.

При обработке ряда, не имеющего признаков нормального рас­пределения — непараметрического ряда, — для величины, которая выражала бы его центральную тенденцию, более всего пригодна ме­диана, т.е. величина, расположенная в середине ряда. Ее определя­ют по срединному рангу по формуле Me = (п + 1)/2, где Me оз­начает медиану, п — как в ранее приводившихся формулах — число членов ряда. При нечетном числе членов ряда ранговая медиана — целое число, при нечетном число — с 0,5. Заметим, что числовое значение медианы может и не быть в составе самого обрабатывае­мого ряда.

Возьмем к примеру ряд в семь членов: 3—5—6—7—9—10—11.

Проранжировав его, имеем: 1—2—3—4—5—6—7.

Ранговая медиана в таком ряду равна: Me = (7 + 1)/2 = 4, этот ранг приходится на величину 7.

Возьмем ряд в восемь членов: 3—5—6—7—9—10—11—12.

Проранжировав его, имеем: 1—2—3—4—5—6—7—8.

Ранговая медиана в этом ряду равна: Me = (8 + 1)/2 = 4,5.

Этому рангу соответствует середина между двумя величинами, имеющими ранг 4 и ранг 5, т.е. между 7 и 9. Медиана этого ряда равна: Me = (7 + 9)/2 = 8.

Следует обратить внимание на то, что величины 8 в составе ряда нет, но таково значение медианы этого ряда.

Вернемся к изучаемому ряду. Он состоит из 18 членов. Его ран­говая медиана равна: Me = (18 + 1)/2 = 9,5.

Она расположится между 9-й и 10-й величиной ряда. 9-я величи­на — 52, 10-я — 68. Медиана занимает срединное место между ними, следовательно, Me = (52 + 68)/2 = 60.

По обе стороны от этой величины находится по 50% величин ряда.

Характеристику распределения численностей в непараметриче­ском ряду можно получить из отношения его квартилей. Квартилью называется величина, отграничивающая 1/4 всех величин ряда. Квартиль первая — ее обозначение Q1 вычисляется по формуле:

Это полусумма первого и последнего рангов первой — левой от медианы половины ряда;

квартиль третья, обозначаемая Q3 вычисляется по формуле:

т.е. как полусумма первого и последнего рангов второй, правой от ме­дианы, половины ряда. Берутся порядковые значения рангов по их по­следовательности в ряду. В обрабатываемом ряду Q1 = (1+9)/2 = 5, Q3 = (10 + 18)/2 = 14.

Рангу 5 в этом ряду соответствует величина 39, а рангу 14 — 70. Следовательно, в данном ряду Q1 = 39, а Q3= 70.

Для характеристики распределения в непараметрическом ряду вычисляется среднее квартильное отклонение, обозначаемое Q. Формула для Q такова: Q = (Q3 - Q1)/2. Для обрабатываемого ряда Q = (70 - 39)/2 = 15,5. Были рассмотрены статистическая обработка параметрического ряда (x и s), статистическая обработка непараметрического ряда (Mе и Q). Параметрический ряд относится к шкале интервалов, не­параметрический — к шкале порядка. Но встречаются также ряды, относящиеся к шкале наименований. Наиболее краткая характери­стика такого ряда может быть получена с помощью моды, величи­ны, которая выражает наивысшее числовое значение величин дан­ного ряда, при п — числе членов ряда. Следует заметить, что моду можно лишь условно считать выражением центральной тенденции в ряду, относящемуся к шкале наименований. Она выражает наибо­лее типичную величину ряда.

Рассмотрим подробнее пример, приведенный выше (С. 242). Там речь шла об участниках некой конференции; в их числе были 3 англичанина, 2 датчанина, 5 немцев, 3 русских и 1 француз. Мода в данном ряду приходится на участников конференции — немцев. Число членов ряда равно — 13, а мода — Mo = 5.

Итак, мы рассмотрели статистические методы, применяющиеся для задач первого типа.

Второй тип задач. Психологу в его повседневной практической и исследовательской работе приходится искать ответы на различные вопросы. Предположим, что проведены диагностические испытания умственного развития у школьников шестых классов городской и сельской школ: можно ли в дальнейшем рассматривать обе школь­ные выборки как принадлежащие одной совокупности? По поводу неодинаковых условий обучения в городской и сельской школах вы­сказано немало противоречивых суждений. Психолог в данном слу­чае намерен опираться на экспериментальные факты. Чтобы прийти к какому-то решению, целесообразно проанализировать полученный экспериментальный материал. Это достаточно часто встречающаяся задача, встречаются и такие, где приходится решать тот же вопрос относительно нескольких, а не двух выборок. Это и есть задачи второго типа.

Перед психологом два ряда численностей. Прежде всего нужно установить, на какие статистические методы опираться — на пара­метрические или непараметрические? Применять параметрические методы следует в том случае, если оба ряда имеют распределение, не отличающееся от нормального. Если же один из рядов не соот­ветствует этому требованию, то применение параметрических мето­дов противопоказано.

Положим, оба ряда показывают распределение, допускающее применение параметрических методов. Сравнение величин цен­тральных тенденций — в данном случае их представляют средние арифметические — не даст ответа на вопрос о том, относятся ли выборки к одной совокупности. Почти безошибочно можно утвер­ждать, что средние арифметические не будут тождественными, но этого явно недостаточно для ответа на поставленный вопрос, ответ не был бы получен, даже если бы средние арифметические оказа­лись равными. Для данного случая более всего подходит сравнение выборок по критерию t Стьюдента.

Перед тем как ознакомиться с техникой вычислений и интерпре­таций результатов, получаемых при работе с критерием t Стьюден­та, необходимо остановиться на некоторых статистических терми­нах; они постоянно встречаются в прикладной статистике.