Смекни!
smekni.com

Нормы и интерпретация результатов теста (стр. 5 из 12)

В том разделе статистики, где заходит речь о проверке гипотез, постоянно приходится иметь дело с нуль-гипотезой, или нулевой гипотезой. При сравнении двух выборок нуль-гипотеза формулиру­ется следующим образом: между изучаемыми выборками нет разли­чия или, иначе, различие между ними несущественно. Все даль­нейшие расчеты направлены на то, чтобы прийти к заключению верна ли нуль-гипотеза или от нее нужно отказаться, и в действи­тельности существенная разница между выборками имеется. В дру­гих случаях в зависимости от содержания материала меняются формулировки, но вычисления показывают, какова вероятность нуль-гипотезы. Для обозначения нуль-гипотезы используется символ h0.

Допустим, что разница между выборками имеется. Исследователь встает перед вопросом, насколько существенна эта разница, как часто будет обнаруживаться она в последующем, когда придется работать с подобными же выборками. Самые общие соображения при этом таковы: если разница получена на небольшом материале (числе случаев, охваченных той или другой выборкой), то при по­вторном изучении таких же выборок разницу, возможно, найти и не удастся. Другое дело, если изучаемые выборки не малы. Далее важно, оказалась ли обнаруженная разница значительной. Это рас­суждение и следует иметь в виду, когда в статистике речь идет об уровне значимости полученного коэффициента, параметра и пр. Уровни значимости представлены в специальных таблицах, которые обычно даются в учебниках статистики, есть такие таблицы и в конце этой главы. Какой уровень значимости можно признать удов­летворительным? В психологии и педагогике минимально допусти­мым для отказа от Н0 уровнем значимости признается 0,95. Это значит, что расчеты, основанные на математической теории вероят­ности, дают основание утверждать, что при проведении таких же исследований, по крайней мере в 95% случаев, будет получен та­кой же результат, возможно, лишь с несущественными отклонения­ми. В некоторых работах удается получить и более высокие уровни значимости — 0,990 и даже 0,999 (эти же уровни значимости мож­но записать: 0,05; 0,01; 0,001. Записывая уровень 0,95, имеют в ви­ду, что полученные параметры повторяются в 95% случаев, а запи­сывая 0,05, что в 5% случаев они не повторятся; смысл в том и другом случае один и тот же).

А если не получен уровень значимости 0,95? Тогда нужно при­знать, что нуль-гипотезу не следует отвергать. Впрочем, иногда, по задачам исследования признается достаточным и более низкий уро­вень. В некоторых исследованиях цель состоит в том, чтобы прийти к утверждению нуль-гипотезы.

Обращаясь к таблицам уровней значимости, исследователь обна­руживает во многих из них специальный столбец с указанием сте­пеней свободы, относящихся к полученному параметру или коэф­фициенту. Уровень значимости прямо зависит от того, каким чис­лом степеней свободы обладает данный коэффициент или параметр. Число независимых величин, участвующих в образовании того или другого параметра, называется числом степеней свободы этого па­раметра. Оно равно общему числу величин, по которым вычисляет­ся параметр, минус число условий, связывающих эти величины (Урбах В.Ю. Указ. соч. С. 161). Число степеней свободы и способы его определения всегда даются в окончательных формулах, которы­ми пользуется исследователь при статистической обработке своих материалов.

Рассмотрим пример с двумя выборками, которые, по мнению ис­следователя, можно рассматривать как подлежащие обработке па­раметрическим методом.

Двум группам шестиклассников по 6 человек было дано задание бросать мяч в корзину. Группы обучались по разным программам. Можно ли считать, что разница в программах сказалась на конеч­ной результативности школьников? Для сравнения было взято чис­ло попаданий в корзину. Всего было дано по 10 проб.

Формула вычисления t:

где


Материал, подлежащий обработке:

первая выборка, п = 6


Исп. х
x - x
(x - x)2
А 2 -1 1
Б 4 1 1
В 6 3 9
Г 4 1 1
Д 1 -2 4
Е 1 -2 4

вторая выборка, п = 6

Исп. х
x - x
(x - x)2
Ж 5
3 4 -1 1
И 2 -3 9
К 8 3 9
Л 6 1 1
М 5


Ход вычислений показывает:


fd (число степеней свободы) =n1-n2 -2=6+6-2= 10. По таблице уровней значимости t Стьюдента находим t0,95 = 2,223. Существенность различия не доказана, хотя полученное значение t = 1,9 очень близко к требуемому уровню. Принимается Но. Нель­зя утверждать, что выборки существенно различаются.

Для вычисления t существует несколько формул, различающихся только техникой расчетов.

Сравниваемые выборки могут быть неодинаковыми по объему. Применять параметрические методы можно лишь к материалу, об­ладающему определенными свойствами, о которых говорилось ра­нее. В других случаях следует обращаться к непараметрическим методам.

Ниже будет рассмотрена техника применения критерия Манна— Уитни, непараметрического метода, часто используемого в психоло­гических исследованиях.

Предположим, что психологу нужно решить такую задачу. Есть ли различия между выборками школьников одного и того же клас­са, если одна выборка включает школьников, которые после кон­трольной работы проходили дополнительное обучение по коррекционным программам, другая — школьников, такого обучения не про­ходивших? Обе выборки малы, поэтому для проверки гипотез о су­ществовании различий между выборками следует взять мощный критерий. Мощность критерия — это вероятность принятия при его применении правильного решения для отклонения ho;чем выше эта вероятность, тем больше мощность критерия. Мощность любого критерия увеличивается вместе с увеличением объема сравниваемых выборок, а также со снижением того уровня зна­чимости, на который ориентируется исследователь. Другими словами, если выборки велики, то принятие правильного реше­ния относительно ho увеличивается. Ориентация на высокий уровень значимости, например 0,990 или 0,999, предполагает применение достаточно мощного критерия. В рассматриваемом примере выборки малы, а при установлении существенной раз­ницы между ними, т.е. при отказе от hoжелательно, чтобы уро­вень значимости был как можно выше, но не ниже 0,95.

Формула вычисления критерия Манна—Уитни такова:


или:


В примере сравнению подлежат результаты контрольной работы выборки A из 4 школьников, проходивших обучение по коррекционным программам, и выборки Б, состоящей из 7 школьников, никако­го коррекционного обучения не проходивших. Последовательность действий, предусматриваемых вычислением всех нужных для реше­ния задачи величин, такова.

1. Выписать в любом порядке число успешно решенных заданий школьниками сначала выборки А, затем выборки Б.

2. Проранжировать число успешно решенных заданий, объединив обе выборки.

3. Найти сумму рангов выборок А и Б раздельно.

Эти три действия дадут все необходимые для вычисления крите­рия данные.

Для проверки расчетов вычисляется:

RA + RB = N/2(1 + N); т.е. 37 + 29 = 11/2(1 + 11), т.е. 66 = 66.

Имея величины U1 и U2, следует обратиться к таблице уровня значимости. На совмещение строки четвертой со столбцом седьмым находим 3/25. По условиям таблицы, U1 должно быть меньше верх­ней, aU2 больше нижней величины. Полученные величины по­казывают, что hoотвергается. Можно утверждать, что между вы­борками имеется существенное различие: результаты свидетельст­вуют о преимуществе выборки A.

Попарное сравнение. В предыдущем материале исследователь имел дело с двумя выборками. В обработку они поступают как два ряда чисел; каждый ряд есть результат экспериментов, проведенных с данной выборкой. Однако часто приходится встречаться с мате­риалом, в котором даны два числовых ряда, но оба они получены на одной выборке; сюда относятся исследования, когда эксперименты проводятся до и после какого-то специального воздействия. Цель такого исследования состоит в том, чтобы установить, есть ли дос­таточно существенные изменения и можно ли утверждать, что спе­циальное воздействие имело существенное значение.

Например, психологу было предложено ответить на такой вопрос: