Рассмотрев указанные примеры, мы все-таки не охватили другие важные стороны измерителей, на которые должно быть обращено внимание при построении модели. К ним относиться надежность.
Если измеритель вышел из строя или его отказ привел к снижению точности определения параметра распознавания, то ясно, что это приведет к падению эффективности классификации объектов. Следовательно, при моделировании такие ситуации должны быть предусмотрены, а выполнить это достаточно просто, если мы располагаем, например, вероятностью безотказной работы соответствующего средства как паспортной характеристикой. В соответствии с рассмотренным нами методом моделирования случайных событий (метод Монте-Карло) достаточно организовать датчик таких случайных событий как отказ и при выполнении условий выхода из строя запрещать модели измерителя выдавать на выход данные по распознаваемому объекту. Если же отказ приводит только к снижению точности, то в задачи такого модуля должно входить соответствующее изменение характеристик измеренных параметров по сравнению с паспортными.
Проведенное рассмотрение типового состава модели измерителя даетоснования считать, что реальные объекты, явления, процессы, подлежащиераспознаванию, а соответственно и измерители их характеристик, могутобладать широким спектром особенностей. Именно они отражаются на принципах построения модели измерителя. Поэтому реально рассматриваемыемодели могут быть и значительно проще и существенно сложнее. Однакоизложенные принципы дают основы методологии, базирующейся на тщательном анализе объектов, явлений, процессов и задач измерения их характеристик, а поэтому позволяют надеяться на учет указанной простоты или сложности при реализации и обеспечении изоморфного представления моделей измерителей.
5.6.2. Моделирование каналов связи
Немаловажную роль в определении характеристик распознаваемых объектов играют каналы связи. И говоря о том, что главная цель СР - получение информации для решения задач распознавания, указанные каналы можно считать конструктивно присущими таким системам.
В качестве каналов связи могут рассматриваться:
-каналы передачи и приема энергии измерителями, осуществляющими дистанционное измерение характеристик объектов;
-каналы передачи информации измерителя на устройства, осуществляющие ее обработку и использование.
Так, если речь идет об измерителях радиолокационного типа, то здесь каналом названного первого типа является земная атмосфера. Она обладает частотно-избирательными свойствами, пропуская почти без потерь одни волны и задерживая другие. Ослабление и поглощение при этом носит экспоненциальный характер и зависит от протяженности трассы распространения сигналов от радиолокатора до наблюдаемого объекта. Поэтому при достаточно коротких трассах этим ослаблением можно пренебречь. В противном случае любые ослабления сигналов ведут как к снижению дальности наблюдения интересующего объекта, так и к ухудшению точности сопутствующих измерений.
Ионосфера Земли является анизотропной средой, обладающей различными значениями показателя преломления для различных длин волн. В итоге - изменение поляризации, а значит ослабление принимаемого сигнала.
Слоистость атмосферы - причина систематических ошибок измеренияугловых координат, дальности и скорости объекта.
Местные неоднородности атмосферы, обусловленные вихревыми процессами в воздухе, - причина случайных ошибок измерений.
Для ультразвукового локатора, используемого в медицинской аппаратуре УЗИ, слоистость и местные неоднородности тканей человека, частотная зависимость их коэффициента пропускания приводят:
-к затуханию сигнала;
-к поглощению сигнала;
-к рассеянию сигналов;
-к интерференции ультразвуковых колебаний.
Если первые три вызывают неоднородное ослабление отраженного сигнала, несущего информацию о состоянии внутреннего органа человека, то последнее приводят к появлению спекл - шума, затрудняющего наблюдения распознаваемых объектов и являющегося результатом дифракции отраженных от различных неоднородностей сигналов.
Характерно то, что в большинстве случаев исследованию рассматриваемых каналов связи посвящены многочисленные теоретические и экспериментальные работы. При этом достаточно часто указанные воздействия на распространение сигналов измерителей хорошо описываются математически. Для них существуют или теоретические зависимости или в худшем случае эмпирические соотношения, хорошо себя зарекомендовавшие. В каждом конкретном случае канала связи и измерителя эти зависимости и соотношения наполняются своим специфическим содержанием.
Главный вывод из этого рассмотрения - возможность учета искажений информационных сигналов в разрабатываемой модели системы распознавания.
Второй из упомянутых типов каналов передачи информации измерителей - это в большинстве случаев каналы ее ввода в ЭВМ. Здесь главным является, если не учитывать дальность передачи и соответствующее ослабление сигналов, преобразование измеренного значения , представленного в виде тока или напряжения в цифровую форму.
Такое преобразование может осуществляться как стандартными средствами ЭВМ, так и в самом измерителе параметров объектов распознавания.
Речь же о важности выяснения существа указанного преобразования идет потому, что дискретизация всегда вносит ошибки в передаваемый параметр и должна учитываться при моделировании.
Здесь математическое описание достаточно строго и исходит их того, что плотность распределения вероятностей ошибок дискретизации - равномерная с нулевым математическим ожиданием и дисперсией
где D - цена младшего разряда преобразования.
Таким образом, рассмотрение показало, что каналы связи, осуществляющие передачу информации зависят главным образом от типа измерителя. Поэтому их включение в модель измерителя в качестве специальных модулей не должно вызывать сомнений.
В итоге типовая функциональная схема модели измерителя может быть представлена следующим образом (Рис.5.6.1).
Динамические характеристики объекта
Модель 1-го измери- Модель 2-го измери-
теля теля
отказов измери- отказов измери- ....
теля теля
начала и продол- начала и продол-
жительности из- жительности из- ....
мерений мерений
параметров параметров
аппаратурных аппаратурных ....
ошибок ошибок
ошибок канала ошибок канала ....
связи связи
преобразования преобразования ....
параметра в циф- параметра в циф-
ровой код ровой код
Рис.5.6.1. Модель средств измерения характеристик
Л Е К Ц И Я 5.7.
Моделирование алгоритма распознавания
5.7.1. Модель алгоритма распознавания
объектов (явлений, процессов)
О модели алгоритма распознавания следует вести речь в следующих случаях:
1)При программной реализации соответствующего алгоритма не на рабочей ЭВМ, а на ЭВМ, предназначенной только для предварительной его отработки.
2)При отличиях языка программирования модели от языка программирования рабочего алгоритма.
3)При отработке в процессе моделирования принципов построения алгоритма и, в частности, алфавита классов и словаря признаков, а также решающего правила.
4)При различных сочетаниях ситуаций, представленных в пп. 1-3 настоящего перечня.
Если алгоритм системы распознавания реализуется на “своей” ЭВМ в эксплуатационном представлении, то он уже в силу полной изоморфности и аналогичности не представляет собой модель, а является реальной составной частью системы или ее модели (если идет речь о модели системы). В этом случае функциональная схема алгоритма ничем не отличается от схем, приведенных при изучении вопросов их классификации.
Реализация алгоритма распознавания на “своей” ЭВМ совместно с моделью объекта распознавания и средств измерения характеристик представляет собой комбинированную модель СР (реальный программно реализованный алгоритм СР и модели входных воздействий), предназначаемую для оценок:
-правильности функционирования алгоритма СР;
-эффективности системы распознавания, имеющей выбранную структуру и реализацию.
Первая из рассмотренных ситуаций применения моделирования систем распознавания может иметь достаточно широкий спектр задач в процессе создания алгоритма и его отработки, если отсутствуют экономически допустимая возможность его реализации на рабочей ЭВМ или ЭВМ подобного типа.