Смекни!
smekni.com

Анализ работы Вертгеймера "Продуктивное мышление" (стр. 2 из 2)

Он приводит несколько примеров ложного обобщения. Вот один из них. Берутся тройки чисел: 12—3—4; 56 — 7 — 8; требуется по двум числам 45 — 6 определить третье. Возможный ответ: 7, поскольку в предыдущих случаях третье число было всегда больше второго на 1: 4=3+1; 8=7+1. Соответственно, в последнем случае 6+1 ==7. «Разве здесь существенно, что ученик основывал свою «гипотезу» на очень малом числе случаев? — спрашивает М. Вертгеймер.— Нет. Сама гипотеза нелепа». Более разумной представляется гипотеза, что числа связаны известным простым арифметическим законом: 12:3=4; 56:7==8; а следовательно, 45:6=7,5. Таким образом, правильным оказывается решение, обоснованное в более широком контексте, чем исходные данные.

Одна из самых популярных идей искусственного интеллекта: мозг есть машина для преобразования символьной информации. Пафос такого рода программ — в их полной независимости от внешнего мира, от особенностей восприятия. Реальный опыт работ по искусственному интеллекту показывает, что множество признанных интеллектуальных операторов (например, нормировки, утоньшения, наложения и др.) нужны лишь в случаях, когда внешний мир описывается неадекватным образом. При переходе к адекватному языку описания надобность в такого рода псевдоинтеллектуальных операторах просто пропадает. Точно так же большая часть интеллекта теснейшим образом связана с организацией движений, с их физической реальностью. В то же время ведущие журналы и конференции по искусственному интеллекту отторгли от себя работы по распознаванию образов и робототехнике как «низкий» жанр.

На протяжении всей книги М. Вертгеймер горячо возражает против такой модели мышления, когда мозг рассматривается как машина для преобразования символьной информации: «Точка зрения, согласно которой мышление рассматривают только как интеллектуальную операцию... является весьма искусственной и узкой» [2; с. 209].

Проблема распознавания образов имеет дело не только с отдельными объектами и их классификацией, но и с классами и понятиями. Узкокибернетическое определение понятия как обобщения предметов некоторого класса по их специфическим признакам проникло и в философскую литературу. Такой подход предполагает процедуру извлечения общих признаков из заданного множества объектов, принадлежащих одному классу. Выше упоминалась возможность уменьшения материала обучения за счет использования внешней информации. М. Вертгеймер в своей книге предложил кардинально отличный путь построения понятий и выявления существенных признаков — за счет внутренних свойств единичного примера. Искусственному интеллекту пришлось добираться до этой идеи четверть века. Оказалось, что при описании объекта на адекватном языке сама грамматическая структура высказывания содержит информацию об иерархии важностей признаков объекта: чем глубже расположена в грамматической структуре данная характеристика, тем менее важной она является. Это относится к описаниям на естественном языке, к программам на языках программирования, к специальным языкам описания изображений и т. д.

Такой подход к образованию понятий позволяет по единственному примеру построить понятие «арка», по единственной флюорограмме описать весь класс допустимых флюорограмм, по единственному образцу каждой буквы распознавать все допустимые их варианты (чего не удавалось сделать старыми методами и по 200 образцам).

Одной из задач, которая обсуждается в книге, хорошо знакома тем, кто занимается искусственным интеллектом. Это задача о построении из кубиков арки (по терминологии М. Вертгеймера — моста). М. Вертгеймер рассматривает ее как задачу освоения понятия моста по единственному примеру. У искусственного интеллекта был свой путь к ее решению. Сперва понятие предполагалось создавать обобщением множества примеров. Для этого необходимо было показать мосты различной высоты, длины и цвета и определить множество объектов, от которых их нужно было отличать. Позднее была предложена более экономная процедура: показ одного моста и ряда подобранных специально конструкций «не моста». Наконец, было понято, что при адекватном описании единственной показанной конструкции моста в самой грамматической структуре отражена иерархия важности признаков, определяющих мост.

Вот как выглядит такое описание моста (скобки отмечают глубину уровня в грамматической структуре):

(((4-гранная) призма) лежит) на

((((4-гранная) призма) стоит) (((4- гранная) призма) стоит))

Изменение самого глубокого уровня (вместо «4-гранная» — 5-гранная) не разрушает понятия «мост». Замена на более высоком уровне понятия «призма» на «пирамида» сильно искажает понятие «мост», делает его более похожим на карикатуру, но сохраняет основные черты. Замены на еще более высоком уровне полностью разрушают понятие.

М. Вертгеймер отмечает еще одно важное свойство моста — устойчивость, которое обычно явно не упоминается, но позволяет резко ограничить возможные конструкции. Это замечание еще раз демонстрирует продуктивность выхода в новый контекст, в реальный мир.

Особый интерес вызывает пример на сложение ряда натуральных чисел. Хороший способ ее решения — это попарное сложение крайних чисел ряда (все суммы оказываются равны). Переход к геометрической интерпретации демонстрирует, каким образом можно прийти к правильному группированию.

Основным пунктом всех примеров М. Вертгеймера, демонстрирующих продуктивное мышление, является умение увидеть ситуацию по-новому, а точнее — по-новому ее описать (например, на другом языке). Эта идея находит полное подтверждение во многих задачах современного искусственного интеллекта. И.М. Гельфанд указал на этот путь как магистральный для искусственного интеллекта.

Таким образом, видно, что Вертгеймер резко протестует против принятия ассоцианистского подходя для решения на компьютере задач распознавания устной и письменной речи, самолетов и людей, отпечатков пальцев и почерков, указывая на его неосмысленность, а потому неэффективность и неприемлемость для решения некоторых задач.

2.3 Целостный подход как противопоставление логическому и ассоцианистскому в монографии

Решающим в исследовании мышления М. Вертгеймер считал подход с позиций гештальттеории, т. е. целостный подход. Суть этого подхода М. Вертгеймер сформулировал следующим образом: «...существуют связи, при которых то, что происходит в целом, не выводится из элементов, существующих якобы в виде отдельных кусков, связанных потом вместе, а, напротив, то, что проявляется в отдельной части этого целого, определяется внутренним структурным законом этого целого. Гештальттеория есть это, не больше и не меньше» [2; с. 6]. Имеет смысл сопоставить это определение с другим известным манифестом целостности: «целое не есть сумма частей». Обращает на себя внимание, что М. Вертгеймер использует в своем определении два понятия: «кусок» и «часть». Если сперва нарезать целое на куски, а потом связывать их в целое, то адекватного решения мы не получим. Если же разде­лить целое на куски, согласованные с целым, то это будут уже не куски, а части, в которых отражено это целое. Итак, целое представимо своими частями, таким образом выделенными. Целое не есть сумма его кусков, но есть сумма его частей.

М. Вертгеймер демонстрирует целостный подход к анализу мышления на целом ряде примеров: от построения арки из кубиков дошкольниками до создания теории относительности А. Эйнштейном. Первый пример, который рассматривается в книге,— определение формулы для вычисления площади параллелограмма. В результате наблюдений над многими людьми (детьми и взрослыми) М. Вертгеймер излагает следующие основные шаги мыслительной работы в этой задаче: 1) отправная точка рассуждений — понятие площади прямоугольника; 2) попытка действовать как в прямоугольнике (нарезать полоски, соединяя соответствующие точки) не удается; 3) можно нарезать прямоугольные полоски, но лишь для части фигуры; 4) неопределенной остается площадь двух треугольников. Их можно сложить в прямоугольник.

Основным пунктом всех примеров М. Вертгеймера, демонстрирующих продуктивное мышление, является умение увидеть ситуацию по-новому, а точнее — по-новому ее описать (например, на другом языке). Эта идея находит полное подтверждение во многих задачах современного искусственного интеллекта. И. М. Гельфанд указал на этот путь как магистральный для искусственного интеллекта 20 лет назад.

В заключение М. Вертгеймер перечисляет важные процедуры мышления, выделяемые целостным подходом: изоляция, группировка, центрирование (перенос точки отсчета), транспозиция структуры. Он сознает всю неопределенность этих терминов и предлагает читателю «считать эти термины метками, указывающими на конкретные проблемы, обсуждавшиеся в различных главах» [2; с. 272]. При этом логические и ассоцианистские операции мышления должны не отвергаться, а использоваться в месте и объеме, диктуемыми структурой ситуации в целом.

Таким образом, при всей заостренности высказываний относительно логического и ассоцианистского подходов в мышлении М. Вертгеймер не отвергал роли логики и ассоциаций в процессе мышления; он лишь настаивал на ограниченности их роли и невозможности функционирования продуктивного мышления лишь на их основе

Заключение

Острая противоречивость книги М. Вертгеймера была вызвана тем, что в 30-е гг. ассоцианистский и логический подходы в исследовании и трактовке мышления превалировали. Начавшиеся позднее работы по искусственному интеллекту опирались именно на эти широко распространенные концепции. Этому способствовало и то, что основные операции данных подходов (корреляция, логические функции) легко выполнялись компьютером, в то время как операции целостного подхода были весьма расплывчатыми и даже при желании неясно было, как их реализовать.

Однако в подавляющем большинстве работ целостный подход лишь афишируется, что и предвидел М. Вертгеймер: «Некоторые положения очень напоминают формулировку гештальттеории. Однако, когда дело доходит до конкретного рассмотрения проблемы, вновь всплывают старые операции, старые правила и установки» [2; с. 39]. Чаще всего системный (целостный) принцип рассмотрения проблемы подменяют структурным. Различие между ними в том, что, реализуя структурный подход, при решении необходимо выявить и учесть структуру на множестве заданных элементов, а при целостном подходе необходимо разбить целое на элементы (части) так, чтобы они были согласованы друг с другом и с целым, и выявить их отношения (т. е. структуру). Структурность (и в частности, иерархичность) является неизбежным продуктом целостного подхода.

Список литературы

1. Величковский Б.М. Когнитивная наука. Основы психологии познания: учебное пособие для студентов высш. учеб. завед. – Москва. – Академия: Смысл., - 2006. – 430 с.

2. Вертгеймер М. "Продуктивное мышление", М., 1987, - 233 с.

3. Гейвин Х. Когнитивная психология /СПб.: Питер, - 2003. – 268 с.

4. Интеллектуальные процессы и их моделирование / Под ред. Е.П. Беликова, А.В. Чернавского. М., 1987.

5. Солсо Р. Когнитивная психология. – Питер. – 2006. – 588 с.

6. Губерман Ш.А. Машинное зрение и теория гештальта // Вопр. психол. 1983. № 3.