В клинике локальных поражений головного мозга нарушения межполушарного взаимодействия возникают, прежде всего, при поражении мозолистого тела и других спаечных структур, объединяющих оба полушария (вследствие опухоли, кровоизлияния и т.д.). Симптоматика поражения мозолистого тела в целом сходна с той, которая описана как «синдром расщепленного мозга». Специальное исследование больных с частичным расечением мозолистого тела (вследствие операции по удалению артериовенозных аневризм, локализованных в области мозолистого тела) обнаружило различия в нарушениях высших психических функций при операциях на передних, средних и задних отделах мозолистого тела [3]. Для всех больных с частичной перерезкой мозолистого тела характерны явления аномии (невозможность называния предметов, воспринимаемых левой половиной поля зрения или левой рукой), игнорирование левой половины тела и левой половины зрительного пространства, явления дископии-Дисграфии. Особенностью последствий частичной перерезки мозолистого тела являются нарушения межполушарного взаимодействия лишь в одной модальности (зрительной, тактильной или слуховой). Модально-специфический характер этих нарушений зависит от объема и места перерезки волокон мозолистого тела (передние, средние, задние отделы). Так, при перерезке задних отделов мозолистого тела возникает тактильная аномия в виде нарушения называния стимулов при их тактильном восприятии левой рукой (при сохранности называния тех же объектов при их ощупывании правой рукой), что объясняется разобщением задних отделов больших полушарий. При более заднем расположении аневризмы (т. е. при более каудальной перерезке мозолистого тела) нарушение межполушарного взаимодействия проявляется только в зрительной сфере, что иногда сочетается с правосторонней гомонимной гемианопсией. Называние объектов, информация о которых поступает в правое полушарие, невозможно. Больные, могут писать только правой, а рисовать — только левой рукой, хотя до операции они могли выполнять обе операции обеими руками («синдром дископии-дисграфии»). Нарушение взаимодействия слуховых систем проявляется в виде невозможности воспроизведения слов, подаваемых в левое ухо (по методике дихотического прослушивания), что наблюдается при повреждении передних и средних отделов мозолистого тела. При частичном поражении передних отделов мозолистого тела нарушается реципрокная координация движений и запаздывает время переноса кожно-кинестетической информации слева-направо и, наоборот — при его оценке по методике, разработанной С. М. Блинковым [цит. по 7].
Таким образом, результаты исследований показали, что различные этапы психической деятельности реализуются преимущественно правым или левым полушарием головного мозга.
Особое место среди нейропсихологических концепций занимает голографическая теория Карла Прибрама, по представлениям которого вся информация (подобно оптической голограмме) распределена более или менее равномерно по коре мозга, и в каждом участке представлена информация о разных событиях. Но при этом Прибрам хранение информации и память связывает в основном с гиппокампальной областью, а процессы воспоминания (и соответственно осознания), естественно, с гиппокампальным тета-ритмом [6].
В общем виде, модель предполагает два основных процесса: пространственно организованные-состояния и операции, выполняемые на фоне этих состояний с помощью импульсной передачи между нейронами. Основные свойства нейронных групп могут комбинироваться в логические операции, усиливающие аналитические и контрольные функции нервной системы. Учитывая их значение, Прибрам подчеркивает, что построение имеющих определенную структуру топологических, то есть пространственных, представительств в нервной системе является одной из форм, которые могут принимать состояния мозга. Он предположил, что взаимодействие динамических структур возбуждения, падающих на рецепторные поверхности, после их передачи по параллельным путям кодируется благодаря горизонтальным связям в активность медленных потенциалов групп нейронов и образует временные микроструктуры, рисунки которых зависят скорее от функциональной организации нейронных соединений, чем от нейронов, как таковых.
Нейронное отображение входных воздействий не является фотографическим и создается не только посредством имеющейся системы фильтров, выделяющих признаки, но и с помощью особого класса преобразований, которые обладают значительным формальным сходством с процессом отражения оптического образа, открытым математиками и инженерами. Этот оптический процесс, названный голографией, основан на использовании явления интерференции структур. Он обладает множеством удивительных свойств, из которых первостепенное значение имеет его способность к распределению и сохранению большого количества информации. Именно эти свойства дают возможность разрешить противоречие между потребностью в функциональной лабильности, быстром темпе изменений и уже рассмотренными анатомическими особенностями в организации нервных систем информации.
Рецепторные явления служат миниатюрными моделями «нейронного голографического» процесса. К примеру, возбуждение одной единицы зрительного нерва оказывает влияние на частоту разрядов соседних «единиц. Отмечается также, что рецептивное поле отдельной единицы образуется в результате такого пространственного взаимодействия между соседними элементами. В зрительном нерве эти рецептивные поля обычно состоят из более или менее округлого центрального пятна, которое реагирует либо возрастанием, либо снижением частоты своих спонтанных разрядов, и из окружающей зоны, которая характеризуется активностью, противоположной по знаку активности центра.
Сущность голографической концепции состоит в том, что образы восстанавливаются, когда их представительства в виде систем с распределенной информацией соответствующим образом приводятся в активное состояние [2]. Эти представительства действуют как фильтры или экраны. Фактически, представление о голографическом процессе возникает еще при рассмотрении оптических фильтров. В этой связи голография понимается как мгновенная аналоговая кросс-корреляция, осуществляемая в результате сопоставления фильтров. Корреляция в мозгу может иметь место на различных уровнях. На периферических уровнях возникает корреляция между последовательными конфигурациями, порождаемыми возбуждением рецепторов: остаточные явления, сохранившиеся после адаптации, действующей посредством механизма затухания, создают регистр буферной памяти, которая обновляется текущими входными воздействиями. На центрально расположенных станциях корреляция влечет за собой более сложное взаимодействие: в любой момент времени входное воздействие коррелирует не только с конфигурацией возбуждения, существующего в любом пункте, но также со структурами возбуждения, прибывающими от других уровней системы. Пример этого вида сложности показан в экспериментах, где конфигурация изменения потенциалов в зрительной коре определялась не только зрительными стимулами, за которыми наблюдала обезьяна, но также условиями подкрепления и «намерением» осуществить тот или иной тип ответа.
Согласно голографической гипотезе, механизм этих корреляций не является следствием ни некоего разобщенного «динамического поля», ни даже изолированных, расщепленных волновых структур. В теории информации распознавание, или сообщение о количественной степени сходства двух вещей, описывается корреляционной функцией двух временных функций, или двух образов. Сложное вычисление корреляционной функции может быть описано математически как операция фильтрации, но первоначально, разумеется, должен быть произведен расчет фильтра, который требуется для осуществления этой операции фильтрации и, с которым будут сопоставляться сигналы. Тот факт, что голограмма, подобно нейронной сети с постулированными нами простыми свойствами, осуществляет свою функцию фильтра с 50%-ной эффективностью, обусловлен тем, что распространяющееся волновое поле автоматически выполняет это трудоемкое вычисление, отвечая требованиям теории [6].
Существование нейронного голографического или сходного с ним процесса не означает, конечно, что входная информация волей-неволей распределяется по всей глубине и поверхности мозга. Информация распределяется только в тех ограниченных областях, где входные воздействия действительно вызывают устойчивые узоры синоптических микроструктур. Более того, для объяснения любого эффекта, развивающегося вслед за специфическим входным воздействием, следует привлечь более локализованные механизмы памяти. Однако информация иногда может быть введена в участки, которые распределены по нейронному пространству, и тогда она становится рассеянной. Восстановление того, что более длительное время хранится в памяти, зависит главным образом от повторения данной структуры, которая первоначально вызвала этот процесс сохранения, или ее существенных частей. Эта способность «адресоваться» прямо к содержанию информации безотносительно к ее локализации, которая столь легко достигается в голографическом процессе, устраняет необходимость иметь в мозгу специальные пути или пункты для хранения информации.