Смекни!
smekni.com

Статистика в обработке материалов психологических исследований (стр. 2 из 4)

Далее нужно установить, сколько раз в опытах встретились числовые значения, соответствующие каждой группе. Сделав это, для каждой группы записать ее численность. Полученные в такой таблице данные носят назва­ние распределения численностей или частот. Рекомендуется предста­вить это распределение в виде диаграммы, на которой изображается по­лигон распределения, или гистограмма распределения. Контуры этого полигона помогут решить вопрос о статистических методах обработки.

Нередко эти контуры напоминают контуры колокола, с наивысшей точкой в центре полигона и с симметричными ветвями, отходящими в ту и другую сторону. Такой контур соответствует кривой нормально­го распределения. Это понятие было введено в математическую ста­тистику К. Ф. Гауссом (1777-1855), поэтому кривую именуют также кривой Гаусса. Он же дал математическое описание этой кривой. Для построения кривой Гаусса (или кривой нормального распределения) теоретически требуется бесчисленное количество случаев. Практиче­ски же приходится довольствоваться тем фактическим материалом, который накоплен в исследовании. Если данные, которыми распола­гает исследователь, при их внимательном рассмотрении или после пе­реноса их на диаграмму лишь в незначительной степени расходятся с кривой нормального распределения, то это дает право исследователю применять в статистической обработке параметрические методы, ис­ходные положения которых основываются на нормальной кривой рас­пределения Гаусса.

Нормальное распределение называют параметрическим потому, что для построения и анализа кривой Гаусса достаточно иметь всего два параметра: среднее значение, которое должно соответствовать высоте перпендикуляра, восстановленного в центре кривой, и так называемое среднее квадратическое, или стандартное, отклонение величины, ха­рактеризующей рассеивание значений вокруг среднего значения; о спо­собах вычисления той и другой величины будет рассказано ниже.

Параметрические методы обладают для исследователя многими преимуществами, но нельзя забывать о том, что применение их право­мерно только тогда, когда обрабатываемые данные показывают рас­пределение, лишь несущественно отличающееся от гауссовского.

При невозможности применить параметрические надлежит обра­титься к непараметрическим методам. Эти методы успешно разраба­тывались в последние 3-4 десятилетия, и их разработка была вызвана прежде всего потребностями ряда наук, в частности психологии. Они показали свою высокую эффективность. Вместе с тем они не требуют сложной вычислительной работы.

Современному психологу-исследователю нужно исходить из того, что «...имеется большое количество данных, которые либо вообще не поддаются анализу с помощью кривой нормального распределения, либо не удовлетворяют основным предпосылкам, необходимым для ее использования».

Генеральная совокупность и выборка. Психологу постоянно при­ходится иметь дело с этими двумя понятиями.

Генеральная совокупность, или просто совокупность, — это мно­жество достаточно большого объема, все элементы которого обла­дают какими-то общими признаками.

Так, все подростки-шестиклассники 12 лет (от 11,5 до 12,5) образу­ют совокупность. Дети того же возраста, но не обучающиеся в школе или же обучающиеся, но не в шестых классах, не подлежат включению в эту совокупность.

В ходе конкретизации проблем своего исследования психологу не­избежно придется обозначить границы изучаемой им совокупности.

Следует ли включать в изучаемую совокупность детей того же воз­раста, но обучающихся в колледжах, гимназиях, лицеях и других по­добных учебных заведениях?

В ответе на этот и другие такие же вопросы может помочь статистика.

В подавляющем большинстве случаев исследователь не в состоя­нии охватить в изучении всю совокупность. Приходится, хотя это и связано с некоторой утратой информации, взять для изучения лишь часть совокупности, ее и называют выборкой. Задача исследователя заключается в том, чтобы подобрать такую выборку, которая репре­зентировала бы, представляла совокупность; другими словами, при­знаки элементов совокупности должны быть представлены в выборке. Это достигается, прежде всего, использованием случайной выборки из совокупности. Составить такую выборку, в точности повторяющую все разнообразные сочетания признаков, которые имеются в элемен­тах совокупности, вряд ли возможно. Поэтому некоторые потери в информации оказываются неизбежными. Важно, чтобы были сохра­нены в выборке существенные с точки зрения данного исследования признаки совокупности. Возможны случаи, и для их обнаружения есть статистические методы, когда задачи исследования требуют создания двух выборок одной совокупности; при этом нужно установить, не взя­ты ли выборки из равных совокупностей. Эти и другие подобные ка­зусы нужно иметь в виду психологу при обработке результатов выбо­рочных исследований.

Следует рассмотреть типы задач, с которыми чаще всего имеет дело психолог. Соответственно приводятся и статистические методы, которые приложимы для обработки психологических материалов, на­правленных на решение этих задач.

Первый тип задач. Данный тип задач представлен в ситуации, когда психологу нужно дать сжатую и достаточно информативную харак­теристику психологических особенностей какой-то выборки, например школьников определенного класса. Чтобы подойти к решению этой задачи, необходимо располагать; результатами диагностических испы­таний; эти испытания, разумеется, следует заранее спланировать так, чтобы они давали информацию о тех особенностях группы, которые в этом конкретном случае интересуют психолога. Это могут быть осо­бенности умственного развития, психофизиологические особенности, данные об изменении работоспособности и т. д.

Получив все экспериментальные результаты и материалы наблю­дений, следует подумать о том, как их подать пользователю в компакт­ном виде, чтобы при этом свести к минимуму потерю информации. В перечне статистических методов, используемых при решении подоб­ных задач, обычно находят свое место и параметрические, и непара­метрические методы; о возможностях применения тех и других, как было сказано выше, судят по самому полученному материалу. Об этих статистических методах и их использовании пойдет речь далее.

Второй тип задач. Это, пожалуй, наиболее часто встречающиеся задачи в исследовательской и практической деятельности психолога: сравниваются между собой несколько выборок, чтобы установить, яв­ляются ли выборки независимыми или принадлежат одной и той же совокупности. Так, проведя эксперименты в восьмых классах двух раз­личных школ, психолог сравнивает эти выборки между собой.

К этому же типу относятся задачи с определением тесноты связи двух рядов показателей, полученных на одной и той же выборке; в та­кой обработке чаще всего применяют метод корреляций.

Третий тип задач. Это задачи, в которых обработке подлежат вре­менные ряды, ряды, в которых расположены показатели, меняющиеся во времени; их называют также динамическими рядами. В предшеству­ющих типах задач фактор времени не принимался во внимание, и ма­териал анализировался так, как будто он весь поступил в руки иссле­дователя в одно и то же время. Такое допущение можно оправдать тем, что за тот короткий период времени, который был затрачен на собира­ние материала, он не претерпел существенных перемен. Но психологу приходится работать и с таким материалом, в котором наибольший интерес представляют как раз его изменения во времени. Допустим, психолог намерен изучить изменение работоспособности школьников в течение учебной четверти. В этом случае информативными будут показатели, по которым можно судить о динамике работоспособнос­ти. Берясь за такой материал, психолог должен понимать, что при ана­лизе динамических рядов нет смысла пользоваться средним арифме­тическим ряда, так как среднее арифметическое замаскирует нужную информацию о динамике.

В основном тексте книги упоминалось о лонгитюдинальном иссле­довании, т. е. таком, в котором однообразный по содержанию психоло­гический материал по одной выборке собирается в течение длитель­ного времени. Показатели лонгитюда — это также динамические ряды, и при их обработке следует пользоваться методами, предназначенны­ми для таких рядов.

Четвертый тип задач. Это задачи, возникающие перед психологом, за­нимающимся конструированием диагностических методик, проверкой и обработкой результатов их применения. Отчасти об этих задачах уже говорилось в других главах, но не уделялось внимания специально ста­тистике. Психологическая диагностика, в особенности тестология, имеет целый ряд канонических правил, применение которых должно обеспечивать высокое качество информации, получаемой посредством диагностических методик. Так, методика должна быть надежной, гомогенной, валидной. По упрочившимся в тестологии правилам все эти свойства проверяются статистическими методами.

Выше были перечислены типы задач, с которыми чаще всего встре­чаются психологи. Теперь мы перейдем к изложению конкретных статистических методов, способствующих успешному решению пере­численных задач. Но прежде следует высказать некоторые соображе­ния о возможностях статистики в проведении психологического ис­следования.

Назначение статистики состоит в том, чтобы извлечь из этих материалов боль­ше полезной информации. Вместе с тем статистика показывает, что эта информация не случайна и что добытые данные имеют определен­ную и значимую вероятность.

Статистические методы раскрывают связи между изучаемыми яв­лениями. Однако необходимо твердо знать, что, как бы ни была высока вероятность таких связей, они не дают права исследователю признать их причинно-следственными отношениями. Статистика, например, утверждает, что существует значимая связь между двигательной ско­ростью и игрой в теннис. Но отсюда еще не вытекает, будто двигатель­ная скорость и есть причина успешной игры. Нельзя, по крайней мере в некоторых случаях, исключить и того, что сама двигательная ско­рость явилась следствием успешной игры.