Смекни!
smekni.com

Идея рефлексивности в теоретической психологии (стр. 15 из 28)

Из вышеизложенных рассуждений и следует, что раздражимость, как категория, долженствующая выражать абстрактно всеобщую сущность жизни, на самом деле есть всего лишь идеализация схемы лабораторного эксперимента над живыми объектами, в которой спонтанная активность экспериментатора, организующего систему воздействий на живой организм, заслоняет от него спонтанную активность самого организма, в которой как раз и заключена специфика живого субъекта перед объектами физическом или химической природы.

Итак, поскольку естественное возникновение и эволюция жизни на нашей планете есть совершившийся факт, то из него со всей очевидностью следует, что самопроизвольно зародившиеся древнейшие организмы – пробионты обладали не всего лишь раздражимостью, или реактивностью, но были спонтанно активны, и, что спонтанная активность представляет собой таким образом наиболее глубоко укорененное свойство, или атрибут всего живого, его подлинно всеобщее определение.

Могли ли, между тем, пробионты обладать предметной активностью, то есть способностью искать и находить свой предмет (пищу), без выраженной внешней подвижности?

Чтобы ответить на этот вопрос, необходимо предварительно уточнить - что может служить пищей, т.е. предметом активности, пробионтов.

Ясно, что таковой по определению не может служить органика биогенного происхождения просто из-за отсутствия таковой в начале процесса биогенеза на Земле[19].

В то же время, пищей для пробионтов не могли служить также и неорганические и элементарные органические молекулы, ибо для того, чтобы синтезировать из них «живую» высокомолекулярную органику, требуется весьма длинная и сложная цепь реакций синтеза, аналогичная той, которая существует, например, у фотосинтезирующих растении.

Пробионт, если, разумеется, исключить возможность его происхождения посредством акта божественного творения, не мог располагать возможностью для столь сложного процесса самосборки. Поэтому, единственно возможной пищей для пробионта могли служить только достаточно сложные и крупные органические молекулы абиогенного происхождения (аминокислоты, сахара, нуклеотиды и др.). И они располагали таковыми в достаточном количестве. По оценке К. Сагана, первобытный океан к моменту зарождения в нем первых форм жизни представлял собой 1%-ный раствор различных органических соединений, т.е. был по существу, весьма концентрированным «питательным бульоном».

Однако, сколь бы ни была высока исходная концентрация питательных веществ в первобытном океане, успешно живущий и развивающийся, т.е. расширенно воспроизводящий свое органическое тело, пробионт[20] должен был раньше или позже создать относительный дефицит питательного субстрата в некоторой окрестности вокруг себя.

Причем, чем успешнее отдельный пробионт ассимилировал абиогенную, «неорганическую» органику, превращая ее в свое собственное органическое тело, том скорее он должен был «съесть» свою собственную основу, создать вышеупомянутый дефицит пищевого материала и, либо погибнуть из-за отсутствия доступной ему пищи, либо начать перемещаться относительно окружающей его среды по градиенту концентрации пищевого вещества.

Заметим, что создание такого локального дефицита пищевой органики, такое воздействие живого организма на окружающую его среду и есть упомянутая выше продуктивность. Организм, не налагающий на внешний, объективный мир печать своей субъективности, и не может взаимодействовать с этим миром как живой организм, относиться к нему как к своей неорганической природе, своему—иному. Мир, не сформированный жизненной активностью самого организма, так и останется для него чуждым и всецело внешним, трансцендентным ему миром, взаимодействие с которым будет целиком носить абстрактно механический или химический характер.

Между тем, если гипотеза о том, что пробионт самим процессом своей жизнедеятельности создавал вокруг себя дефицит пищевого материала, т.е. был организмом продуктивным верна, то сколько-нибудь длительное существование неподвижных живых организмов оказывается невозможным. Однако, прежде чем принять этот вывод, уточним - возникал ли такой дефицит с необходимостью, или могли существовать естественные механизмы компенсации последнего, действующие без перемещения самого пробионта.

Абстрактно, можно представить себе три таких механизма компенсации. Во-первых, абиогенный синтез, достаточно быстро восполняющий убыль пищевых молекул непосредственно в ближайшей окрестности пробионта. Во-вторых, выравнивание концентрации за счет диффузии молекул пищевой органики из слоев воды, удаленных от пробионта. В-третьих, за счет течения воды, «подвозящей» к поверхности пробионта все новые и новые порции питательных веществ. Рассмотрим каждый из этих механизмов в отдельности.

Первый механизм оказывается непригодным потому что процесс абиогенного синтеза органических молекул порождает рацемическую смесь изомеров этих молекул, т.е. смесь, содержащую приблизительно равное число молекул с право- и левосторонней симметрией.

Между тем, «... живой природе присуща практически абсолютная хиральная чистота: белки содержат только «левые» аминокислоты, а нуклеиновые кислоты - только «правые» сахара!

- Причем, саморепликация -... может возникнуть и поддерживаться только в хирально чистой среде»[21].

Следовательно, жизнь, в принципе, не может ни возникать, ни поддерживаться непосредственно в тех местах, где происходит абиогенный синтез органических молекул, а значит возмещение ассимилированного неподвижными пробионтами материала, может происходить либо за счет диффузии молекул последнего, либо за счет их переноса навстречу пробионтам-потребителям с потоком воды.

Возможности диффузии в качестве механизма компенсации расхода ассимилированных пробионтом молекул пищевой органики также весьма сомнительны. Скорость диффузии существенно зависит от температуры раствора и массы переносимых молекул. В диапазоне температуры, пригодном для существования белковых организмов, скорость диффузии может еще быть достаточной для того, чтобы обеспечить взвешенную в воде, неподвижную одноклеточную водоросль относительно легкими молекулами кислорода и минеральных солей, однако она будет явно недостаточна для возмещения расхода крупных органических молекул аминокислот, нуклеотидов, сахаров и т.п.

Предположим, наконец, что пробионты были прикреплены к некоторому неподвижному субстрату, постоянно омываемому водой, содержащей необходимые для их питания вещества. Понятно, что в таких условиях пробионты должны были бы интенсивно наращивать свою совокупную массу и число, а значит раньше или позже выйти за границы специфического «рая», в котором жареные рябчики возникают едва ли не прямо во рту пожирающего их гурмана. Следовательно, даже в этом случае пробионты в масштабе эволюции мгновенно столкнулись бы с пресловутым дефицитом пищевого материала.

Итак, если вышеприведенные рассуждения верны, т.е. если пробионт, потребляя органические молекулы, растворенные в первобытном океане, для расширенного воспроизводства своего белково-нуклеинового тела, создавал дефицит этих молекул в некоторой своей окрестности, то неподвижные организмы безусловно не имели никаких шансов на выживание. И, напротив, такие шансы могли быть только у подвижных форм.

Теперь, когда мы располагаем этим выводом, мы, как будто, можем вернуться к вышеприведенному рассуждению о том, что создавший вокруг себя дефицит пищевого материала пробионт должен был либо погибнуть, не будучи в состоянии с необходимой скоростью воспроизводить свои разрушающийся структуры, либо начать двигаться относительно субстрата по градиенту концентрации пищевого вещества. Между тем, такой вывод, при всей его кажущейся самоочевидности, неизбежно приводит к новой логической трудности.

Если исходить из пробионта, который ассимилируя питательные вещества, покоился бы относительно окружающей его среды, а ведь именно такое поведение как тенденция свойственно всем животным, не исключая, увы, и человека, то нам, разумеется, было бы понятно для чего, с каким целью ему рано или поздно пришлось бы прервать свои столь приятный послеобеденный покой и отправиться в путь по градиенту концентрации пищевых молекул. Вопрос, однако, в том, была бы цель похода по градиенту столь же хорошо «понятна» самому пробионту?

Иначе говоря, если исходить из пробионта, способного к самовоспроизводству своего органического тела без движения, локомоции относительно субстрата, то объяснение его перехода к движению, к локомоции становится невозможным без грубого телеологизма, ибо принципиально неясным останется почему дотоле неподвижный организм вдруг придет в движение, почему он при этом начнет двигаться именно по градиенту концентрации пищевых молекул, а не, скажем, против, поперек или вовсе безотносительно к этому градиенту, и, наконец, как, посредством чего он осуществит эту локомоцию?

Единственным выходом из обрисовавшегося телеологического тупика может быть только предположение, что пробионты имманентно подвижны, причем по своей внутренней природе подвижны так, что процесс их самовоспроизводства есть в то же время процесс их локомоции по градиенту концентрации расходуемого пищевого материала. То есть не сначала пробионты в процессе питания создают вышеназванный градиент, а потом начинают двигаться по нему за новой порцией пищевых молекул, но сам процесс питания, ассимиляции этих молекул есть и причина, и механизм их направленной, предметной локомоции.