Смекни!
smekni.com

Развитие теории научного познания после постпозитивизма (стр. 2 из 3)

Согласно новейшим исследованиям, единство фундаментальных оснований названных научных направлений позволяет говорить о синергетической парадигме в современном естествознании как о едином явлении. На уровне самоопределения синергетика конституирует себя как концепция неравновесной динамики или теория самоорганизации нелинейных динамических сред, задающая новую матрицу видения объекта в качестве сложного (Г. Николис, Пригожин). Фундаментальным критерием «сложности» в синергетике выступает показатель не статического характера (многоуровневость структурной иерархии объекта и т.п.), но показатель сугубо динамический, – а именно: наличие имманентного потенциала самоорганизации.

По оценке Г. Николиса и Пригожина, если центральным предметом анализа синергетики является «рождение сложного», то критерием сложности для нее выступает то, что в исследуемой системе «при определенных условиях могут возникать макроскопические явления самоорганизации». Синергетика исследует класс систем, находящихся за пределами границ состояния термодинамического равновесия (т.е. сильно неравновесных), – Пригожин и И. Стенгерс конституируют предметный ареал синергетической парадигмы как локализующейся «вдали от равновесия». Определяя равновесное состояние объекта, А. Баблоянц отмечает, что в том случае, когда «энтропия изолирует часть материи, которая обладает совокупностью свойств и называется системой, увеличивается и достигает конечной максимальной величины», система входит в такой режим функционирования, что «при этом значении энтропии возможность изменений исчезает, и говорят, что система находится в равновесном состоянии». В этой ситуации действующие на систему возмущения (как внешнего, так и внутреннего характера) затухают во времени, т.е., по определению Г. Николиса и Пригожина, «не оставляют следов в системе», состояние которой в этом случае рассматривается как «асимптотически устойчивое». Однако возможны нестационарные состояния системы, т.е. такие, в которых не успевает установиться равновесное состояние, – в этой ситуации система характеризуется неустойчивостью по отношению к собственным начальным параметрам (неустойчивость по Ляпунову) и, как зафиксировано Дж.М.Т. Томпсоном и Дж.В. Хаитом, экспоненциальной тенденцией к дивергенции. Данная тенденция, однако, реализует себя в границах достаточно четко ограниченной сферы возможности, т.е. неустойчивость означает «случайные движения внутри вполне определенной области параметров» (С.П. Курдюмов).

Становление синергетической парадигмы в естествознании привело к открытию «превалирования неустойчивостей»: по формулировке Г. Николиса и Пригожина, в целом, «мы живем в мире неустойчивых процессов». Собственно, именно исследование неравновесных состояний привело теорию динамических систем к «открытию новых фундаментальных свойств вешества в условиях сильного отклонения от равновесия»: эти фундаментальные свойства заключаются в том, что при прохождении точек неустойчивости в самых различных по своей природе исследуемых средах обнаруживается свойство перехода к так называемому состоянию сложности, т.е. в этих средах «при определенных условиях могут возникать макроскопические явления самоорганизации в виде ритмически изменяющихся во времени пространственных картин» (Г. Николис, Пригожин). Таким образом, в синергетике, по словам Г. Хакена, «исследуются явления, происходящие в точке неустойчивости, и определяется та новая структура, которая возникает за порогом неустойчивости», на основе чего С. удается установить универсальные и «глубокие аналогии», которые «проявляются между совершенно различными системами при прохождении ими точек возникновения неустойчивости». Иными словами, сложность, по оценке Пригожина и И. Стенгерс, отныне рассматривается не как исключение, а как общее правило.

На этой основе синергетика формулирует свой основополагающий тезис, заключающийся в том, что на всех уровнях структурной организации бытия именно неравновесность выступает условием и источником возникновения «порядка» (по оценке Пригожина и И. Стенгерс, именно «неравновесность есть то, что порождает «порядок из хаоса».) Соответственно, тем аспектом исследуемого объекта, на котором центрировано внимание С., или ее предметом, выступает процесс «зарождения упорядоченности» или «самопроизвольная самоорганизация материи, которая возможна только в неравновесных системах» (А. Баблоянц). Фундаментальным свойством исследуемых синергетикой объектов выступает их сложность. Под сложностью понимается способность к самоорганизации, усложнению своей пространственно-временной структуры на макроскопическом уровне в силу происходящих на микроуровне изменений. Так, например, классическим эмпирическим полем синергетических исследований выступает механика жидких сред и, прежде всего, неравновесная гидродинамика.

Необходимым условием реализации самоорганизационных процессов упорядочения неравновесной системы является ее не замкнутость, что выступает как одна из важнейших характеристик исследуемых синергетикой объектов, а именно: открытость по отношению к окружающей среде. Применительно к неравновесным средам справедливо утверждение, что каждая точка такой среды является источником и стоком энергии, т.е. система осуществляет постоянный и взаимный энергообмен с внешней по отношению к ней средой (при этом следует отметить, что реально все наличные системы являются открытыми). Как отмечено Г. Николисом и Пригожиным, неравновесные состояния «связаны с неисчезающими потоками между системой и внешней средой». Поскольку явления самоорганизации, исследуемые синергетикой, связаны с падениями уровня энтропии в тех или иных фрагментах среды, постольку очевидно, что процессы подобной локальной упорядоченности осуществляются за счет притока энергии извне, т.е. «за счет близлежащих областей»: «система должна быть открытой и постоянно обмениваться веществом и энергией с окружающей средой» (А. Баблоянц). Однако это общее положение существенно дополняется в синергетике идеей зависимости специфики возникающих структур от особенностей параметров среды: в неравновесных условиях система начинает реагировать на факторы, которые в равновесном ее состоянии выступают по отношению к ней как индифферентные. Например, в сильно неравновесных условиях химические реакции оказываются восприимчивыми к фактору гравитации: «в сильно неравновесных условиях… системы начинают «воспринимать» внешние поля, например, гравитационное поле, в результате чего появляется возможность отбора конфигураций» (Пригожин и И. Стенгерс). Более того, изменение параметров может в корне изменить пути и механизмы самоорганизационных процессов в неравновесных средах. Так, при экспериментально варьируемых условиях одна и та же исследуемая система может демонстрировать вообще различные формы самоорганизации: химические часы, устойчивую пространственную дифференциацию, образование волн химической активности на макроскопических расстояниях и т.п. На основании этого синергетика делает фундаментальное обобщение, заключающееся в том, что «в сильно неравновесных условиях достоверно установлено весьма важное и неожиданное свойство материи: впредь физика с полным основанием может описывать структуры как формы адаптации системы к внешним условиям» (Пригожин и И. Стенгерс). В основе исследуемых синергетикой явлений самоорганизации лежит феномен так называемой «кооперации» молекул: «в равновесном состоянии молекулы ведут себя независимо: каждая из них игнорирует остальные.

Такие независимые частицы можно было бы назвать гипнонами («сомнамбулами»). Каждая из них может быть сколь угодно сложной, но при этом «не замечать» присутствия остальных молекул. Переход в неравновесное состояние пробуждает гипноны и устанавливает когерентность, совершенно чуждую их поведению в равновесных условиях» (Пригожин и И. Стенгерс). Т.е. если в равновесном состоянии системы «сложность» ее частиц имплицитна (по выражению Пригожина, «обращена внутрь»), то вдали от равновесия она «проявляется снаружи», – конституируется, согласно С., «один из простейших механизмов связи (communication)» (Пригожин и И. Стенгерс). В «Философии нестабильности» Пригожин отмечает, что «кажется, будто молекулы, находящиеся в разных областях раствора, могут каким-то образом общаться друг с другом. Во всяком случае, очевидно, что вдали от равновесия когерентность поведения молекул в огромной степени возрастает. В равновесии молекула «видит» только своих соседей и «общается» только с ними. Вдали же от равновесия каждая часть системы «видит» всю систему целиком. Можно сказать, что в равновесии материя слепа, а вне равновесия прозревает».

Таким образом, внутри системы, находящейся в неравновесном состоянии, проявляются дальнодействующие корреляции, и система начинает вести себя как целое: «частицы, находящиеся на макроскопических расстояниях друг от друга, перестают быть независимыми», – собственно, ячейки Бенара, например, и есть «конвекция, соответствующая когерентному, т.е. согласованному движению ансамблей молекул» (Пригожин и И. Стенгерс). По оценке А. Баблоянц, «кооперация на молекулярном уровне лежит в основе нескольких типов надмолекулярной организации материи, которая в противном случае проявляла бы признаки полнейшего хаоса». Аналогично, при исследовании лазерных систем, Г. Хакеном было отмечено, что вблизи точки возникновения неустойчивости можно обнаружить существенное различие между устойчивыми и неустойчивыми коллективными движениями (модами): «устойчивые моды подстраиваются под неустойчивые и могут быть исключены».

Представленное Г. Хакеном название новой дисциплины – «синергетика» – инспирировано именно тем обстоятельством, что в основе исследуемых этой дисциплиной феноменов самоорганизации лежит, по определению Г. Хакена, «совместное действие многих подсистем… в результате которого на макроскопическом уровне возникает структура и соответствующее функционирование». Важно, что кооперация подсистем какой-либо системы проявляет себя как подчиненная выявленным синергетикой универсальным принципам независимо от природы этих подсистем: элементы абиотических сред образуют упорядоченные макроструктуры; одноклеточные организмы могут коммуницировать в пределах обширных территорий посредством специфических сигналов; кооперативные связи лежат в основе функционирования многоклеточного организма, причем каждый орган демонстрирует их в той же мере, что и организм в целом, и, собственно, наличие кооперативных зависимостей трактуется синергетикой как необходимое основание для идентификации системы в качестве биологической. Исходя из этого, синергетикой моделируется новая версия космогенеза, в частности, полагается, что «в момент образования материи Вселенная должна была находиться в неравновесных условиях, поскольку в состоянии равновесия из закона действия масс… следовало бы количественное равенство материи и антиматерии» (Пригожин, И. Стенгерс). Как отмечено П.М. Алленом, Дж. Энгеленом, М. Санглиером и др., подобный подход радикально меняет традиционные представления о соотношении микро- и макроуровней организации материи и, соответственно, между микроскопическим и макроскопическим уровнями описания, ориентированными на различные понятийные системы и принципы.