Смекни!
smekni.com

Педагогическая психология Талызина Н Ф (стр. 16 из 68)

Непонимание разницы между необходимыми и достаточ­ными, необходимыми и одновременно достаточными призна­ками - широко распространенное явление среди учащихся старших классов, потому что эти важные логические знания не были предметом специального усвоения. Вместе с тем ука­занные виды признаков могут быть усвоены уже в начальной школе. Естественно, ученики при этом должны не просто за­учить определения этих признаков, а научиться работать с ними, т.е. выполнять определенные логические приемы мыш­ления. Прежде всего необходимо научить детей выводить следствия из факта принадлежности предмета к данному по­нятию. Это действие связано с понятием необходимых свойств предмета, поэтому его выполнение дает возможность овладеть этой категорией свойств.

Познакомить с этим действием можно с помощью хорошо известных учащимся предметов. Например, учительница, об­ращаясь к классу, говорит: «Ребята, я принесла карандаш. Он у меня в портфеле. Вы его никогда не видели. Можете ли вы что-нибудь сказать о нем?» Дети дают разные ответы: одни называют грифель, другие форму, третьи - корпус, который держит грифель, четвертые - цвет и т.д. Ответы детей анали­зируются с точки зрения обязательности у карандашей на­званного детьми признака. В результате проведенной работы выделяются два признака, без которых не может быть ни од­ного карандаша: наличие грифеля и какого-то корпуса, в ко­тором грифель закреплен.

Затем учительница говорит, что признаки, которые в обяза­тельном порядке есть у всех предметов данного класса, назы­ваются необходимыми. Отсутствие этих признаков приводит к тому, что предмет оказывается не относящимся к данному клас­су предметов. Так, если карандаш не будет обладать призна­ком - иметь корпус, то он из карандаша превратится в грифель.

После этого учащиеся выполняют еще ряд заданий на вы­ведение необходимых свойств. При этом, естественно, исполь­зуется и учебный материал. Так, в начальной школе ученики знакомятся с понятием отрезок. Учитель может предложить детям задание: «Известно, что линия является отрезком. Ска­жите, какими свойствами обладает эта линия в обязательном порядке?» Учащиеся должны указать следующие свойства: а) это часть прямой; б) она ограничена с двух сторон. Наличие этих свойств вытекает из факта принадлежности линии к по­нятию отрезок прямой.

Графически действие выведения следствий может быть изо­бражено так:

1-е свойство

2-е свойство

3-е свойство

Количество свойств, которые могут быть при этом указа­ны у предмета, зависит от содержания самого понятия и от того, насколько продвинулись учащиеся в изучении его. Так, например, если школьники только приступили к изучению понятия треугольник, то они смогут указать лишь на те его свойства, которые содержатся в определении: а) замкнутая фигура; б) состоит из трех отрезков прямой. После изучения всех теорем, относящихся к треугольнику (в более старших классах), учащиеся смогут назвать дополнительные свойства: сумма внутренних углов равна 180°; сумма двух сторон боль­ше третьей и т.д.

Таким образом, прием выведения следствий должен быть введен в начальной школе, а формирование его должно про­должаться во всех последующих классах.

После знакомства с необходимыми признаками вводится понятие признаков достаточных и признаков необходимых и одновременно достаточных. Здесь важно показать, что не всякий необходимый признак является достаточным. Нередко учащиеся допускают подобные ошибки. Например, четырех­угольник, имеющий хотя бы два прямых угла, они считают прямоугольником. Это неверно, так как этими свойствами обладает и прямоугольная трапеция. И для нее, и для прямо­угольника - это свойства необходимые, но не достаточные. И наоборот, не всякое достаточное свойство является необходи­мым, на что уже было указано раньше.

Вот теперь мы подошли к действию подведения под поня­тие. Отнесение любого объекта к тому или иному понятию предполагает установление наличия у этого объекта призна­ков данного понятия, достаточных или необходимых и одно­временно достаточных.

Как видим, формированию этого приема предшествует ус­воение целого ряда логических знаний и требующих их исполь­зования действий. Если же этого не сделать, то полноценного усвоения приема подведения под понятие не произойдет.

Что же представляет собой этот прием, какую конкретную деятельность должен выполнить ученик, чтобы безошибочно подводить предметы под то или иное понятие? Во-первых, учащиеся должны научиться выделять понятие, под которое требуется подвести данный объект. Рассмотрим случай подве­дения равностороннего треугольника под понятие равнобед­ренный треугольник. Последнее и будет таким понятием. Во-вторых, надо установить, при каких условиях данный объект может относиться к данному понятию. В нашем случае: при каких условиях треугольник может быть равнобедренным. Известно, что для этого он должен иметь две равные стороны. От учащихся потребуются знание определения равнобедрен­ного треугольника и умение вывести из него систему необхо­димых и достаточных признаков. Как показывает опыт, уче­ники, зная определение, не умеют анализировать его.

После этого ученику надо установить, обладает ли данный объект этими признаками. В нашем случае: обладает ли рав­носторонний треугольник признаками равнобедренного. Для этого необходимо воспроизвести определение равносторонне­го треугольника, сопоставить данные в нем признаки с требуемыми, для чего также необходимо специальное обучение.

Важно показать учащимся необходимость учета именно всей системы необходимых и достаточных признаков. Из школьной практики известно, что одна из типичных ошибок учащихся состоит в том, что они при подведении заданных объектов под соответствующие понятия учитывают лишь некоторые признаки из числа необходимых и достаточных и поэтому относят к понятию и такие предметы, которые имеют с объектами данного класса лишь некоторые общие признаки.

Так, в одном из опытов, проведенном в московской школе, учащиеся седьмого класса безошибочно воспроизводили определение окружности, но когда им предъявили эллипс, замкнутую кривую произвольной формы и спросили, можно ли эти фигуры назвать окружностью, - они ответили ут­вердительно. Беседа с учениками показала, что при распознавании окружно­стей они опираются не на всю совокупность признаков, которые указаны в определении окружности и которые они заучили, а только на замкнутость кривой и наличие во внутренней области точки, которую они называют центром. Аналогично учащиеся шестых-седьмых классов нередко смежными углами соглашаются назвать любые два угла, составляющие в сумме 180°. Они хорошо знают, что любые смежные углы обладают этим свойством, т. е. они усвоили, что это свойство является необходимым для всех объектов, относящихся к данному классу предметов. Но школьники его используют и как достаточное: считают, что все объекты, обладающие этим свойством, относятся к данному классу предметов, что уже неверно, так как этим свой­ством обладают и объекты, не относящиеся к данному классу. Так, прямые вертикальные углы также в сумме составляют 180°, а смежными не являются.

В связи с этим особенно важно специально поработать над системой свойств, в совокупности являющихся достаточными для определения объектов данного класса. При этом обязатель­но надо показать, что учет лишь одного из свойств данной сис­темы не позволяет определить объекты однозначно, так как это свойство может быть общим для предметов разных классов.

Все указанные компоненты приема подведения под поня­тие связаны с определенными предметными знаниями и спе­цифическими действиями, характерными для данного предме­та; в нашем случае - геометрии. В самом деле, учащиеся, про­веряя наличие искомых признаков у данного объекта, могут использовать различные методы, характерные для математи­ки, химии, русского языка и т.д. Но во всех случаях общие требования к подведению (проверка наличия определенной системы признаков) задает логика. Логика же задает требова­ния и к оценке полученных результатов. Их можно сформули­ровать следующим образом. Предмет относится к данному понятию в том и только в том случае, когда он обладает всей системой необходимых и достаточных признаков, что можно изобразить так:

признак 1 «+»

признак 2 «+»

……… +

……..

признак n «+»

Если предмет не обладает хоть одним из них, то он не от­носится к данному понятию, что можно изобразить так:

признак 1 «+» (?)

признак 2 «+» (?)

………… _

признак m «-»

признак n «+»

При этом следует отметить, что отрицательный ответ бу­дет при отсутствии любого признака.

Если же нет положительной информации хотя бы про один признак, то при наличии всех остальных признаков ответ оста­ется неопределенным: неизвестно, принадлежит или не принад­лежит предмет к данному понятию. Это можно изобразить так:

признак 1 «+»

признак 2 «+»

………… ?

признак m «?»

признак n «+»

Правило подведения под понятие и умение корректно пользоваться им при работе с любыми понятиями относится к логическому компоненту данного приема.

Учащиеся, получая задания на подведение объектов под различные понятия, постепенно усваивают этот важный при­ем. При работе с ним особое внимание надо уделить третьему случаю: ответ неопределенный. Задания с неопределенными условиями неизменно дают большой процент ошибок. Этот случай трудней усваивается, чем другие, даже при целена­правленной работе. Отсутствие указаний о том или ином при­знаке учащиеся обычно расценивают как отсутствие самого признака. Например, в задаче: «Даны две пересекающиеся прямые. Будут ли они перпендикулярными?» - учащиеся дают отрицательный ответ. Они мотивируют это тем, что в условии не сказано, что прямые пересекаются под прямым углом. От­вет неверный, так как в условии в равной мере не сказано, что прямые пересекаются не под прямым углом. Следовательно, об этом признаке мы не получаем никакой информации, что и создает ситуацию неопределенности: может быть, угол пря­мой, а может быть, не прямой. В силу этого правильный ответ в таких задачах: «Неизвестно».