Говоря о действии подведения под понятие, мы подчеркивали, что объект относится к тому или иному понятию тогда и только тогда, когда обладает всей системой необходимых и одновременно достаточных признаков. Но так бывает только при подведении под понятия, где признаки связаны союзом «и - и» (конъюнктивная структура понятия). Кроме них, есть понятия с другой структурой признаков: связанных союзом «или - или» (дизъюнктивная структура признаков). В этом случае правило подведения под понятие другое: для отнесения предмета к данному классу предметов достаточно наличия лишь одного из указанных признаков. При работе с учащимися эти два случая подведения под понятие необходимо различать. Если же этого не делать, то у учащихся может не сформироваться правильных приемов подведения, и они будут ошибаться.
Как мы видели, задачи на подведение под понятие с дизъюнктивной структурой признаков вызывают у учащихся серьезные трудности. Они доставляют немало хлопот и взрослым, если они не владеют этим приемом. Характерно, что задачи: «Я тебе мать, а ты мне не дочь», «У двух зрячих есть слепой брат, но у него нет братьев» и т.п. - нередко относят к головоломкам.
Какой же логический прием подведения под понятие требуется в подобных случаях? Схематически характер связей в данном случае следующий:
Если в ранее показанном случае отсутствие хоть одного признака означало непринадлежность предмета к данному понятию, то в данном случае это не так: если нет признака В, то мы не имеем права делать отрицательный вывод. Мы должны обратиться к признаку С. Так, в случае понятия «мать» отсутствие дочери не мешает быть матерью, для этого достаточно иметь сына.
Правило подведения под понятие с дизъюнктивной структурой признаков уже другое: «Предмет относится к данному |понятию, если он обладает хотя бы одним признаком из числа оказанных. Если же предмет не обладает ни одним из этих признаков, то он не относится к данному понятию. Если ни про один из признаков нет точных сведений (неизвестно, есть он или его нет), то мы не может сказать, относится или не относится этот предмет к данному понятию».
Схематически это правило можно изобразить так:
1. признак 1 «-»признак 2 «-»
………….«-» +
………….«-»
признак n «+»
2. признак 1 «-»признак 2 «-»
………….«-» -
…………. «-»
признак n «-»
3. признак 1 «?»признак 2 «?»
………. «?» ?
………. «?»
признак n «?»
4. признак 1 «?»признак 2 «-»
……… «?» ?
……… «-»
признак n «?»
Знакомство с этим приемом можно начать с указанных простых житейских примеров, а потом уже перейти и к учебному материалу. Так, когда учащиеся изучают виды предложений, то ряд понятий имеет дизъюнктивную структуру признаков. Примером могут служить неполные предложения. Для отнесения предложения к этому понятию достаточно одного из двух признаков, соединенных союзом «или - или»: или нет подлежащего, или нет сказуемого. Таким образом, этот прием мышления необходим для успешного усвоения учебного материала и его формирование следует начинать уже в начальной школе.
Если при усвоении нескольких понятий (одни из которых имеют конъюнктивную структуру признаков, а другие - дизъюнктивную) учитель научит учеников логически строго выполнять действие подведения под понятие, то в дальнейшем это действие они будут успешно использовать при работе с любыми понятиями.
Уже в начальной школе можно приступить к работе над определениями. Но до этого дети должны усвоить отношения между родовыми и видовыми понятиями. При этом особое внимание следует обратить на то, что видовое понятие обязательно обладает всеми свойствами родового, а родовое является следующей ступенью обобщения. При этом следует отметить, что в определение входят только необходимые и одновременно достаточные признаки.
Без понимания видо-родовых отношений учащиеся не смогут полноценно усвоить программный материал. Так, уже при обучении детей звуковому анализу учитель вводит целую систему видо-родовых отношений: вначале вводится понятие о звуке, затем - о гласных и согласных звуках, а согласные, в свою очередь, делятся на мягкие и твердые. Как показал наш опыт работы в одном из детских садов г. Москвы (детсад № 936), дети шести лет способны понять видо-родовые отношения. Характер этих отношений можно зафиксировать в виде трех цветных кружков, вписанных один в другой. Например, желтый круг означает все множество звуков, а красный круг внутри желтого - означает гласные звуки, зеленый круг на фоне желтого - согласные звуки, а мягкие и твердые согласные можно обозначить кругами разного цвета на фоне кругов, обозначающих согласные. В этом случае дети наглядно будут видеть, что мягкие (твердые) согласные - это звуки, являющиеся и согласными, и звуками.
Желательно познакомить учащихся и с отношениями соподчинения. Так, в курсе природоведения можно показать, что к понятию лиственных деревьев относятся самые разные виды, а лиственные, в свою очередь, соподчинены с хвойными: их вместе объединяет понятие «дерево». Все это заложит основу для формирования более сложных приемов логического мышления, в том числе - для понимания структуры определений, с которыми ученики работают на протяжении всего школьного обучения.
В школе учащийся не знакомится с логической структурой определений: он просто заучивает огромное число различных конкретных определений. И если ученик что-то забывает в определении, то не может путем логического рассуждения восстановить забытое, так как не знает структуры определений, не владеет правилами их построения.
Даже в старших классах учащиеся теряются, когда перед ними встает задача по оценке предложенных определений. Так, в исследовании Н.А. Подгорецкой ученикам десятых классов было предложено 20 определений простейших геометрических понятий: ромб, квадрат, прямоугольник, параллелограмм, четырехугольник. Среди предложенных определений были как правильные, так и ложные. Школьники должны были указать как те, так и другие. Ошибочные определения содержали такие дефекты, как пропуск ближайшего родового понятия (определение квадрата, например, как геометрической фигуры), наличие только лишь необходимых признаков, неточное указание видовых признаков и др.
Оказалось, что даже хорошо и отлично успевающие учащиеся в среднем дали 65% правильных ответов, остальные их ответы были ошибочными. Например, многие учащиеся указали как верное такое определение параллелограмма: «Параллелограммом называется четырехугольник, две противоположные стороны которого параллельны». Это определение ошибочное, так как указанные в нем признаки не позволяют . отличить параллелограмм от трапеции. Аналогично определение квадрата как геометрической фигуры, все стороны и все углы которой равны между собой, многие учащиеся признали правильным, что неверно. Их не смутило то, что квадрат определяется не через ближайший род (прямоугольник), а через весьма отдаленное понятие - геометрическая фигура. Учащиеся делали ошибки как на расширение, так и на сужение объема определяемых понятий.
Таким образом, видо-родовые отношения понятий, логические правила определений должны войти в программу формирования логического мышления учащихся.
Следующий логический прием, который широко используется в процессе обучения и без которого невозможно полноценное мышление человека, - прием выведения следствий с соблюдением требований закона контрапозиции. Этот прием, как и предыдущие, также обычно не выступает в школе в качестве предмета специального усвоения. В силу этого далеко не все учащиеся даже старших классов понимают, что одно и то же следствие может быть связано с разными основаниями, и поэтому от наличия следствия нельзя переходить к утверждению наличия основания. Так, учащиеся правильно указывают, что если углы смежные, то их сумма равна 180°. Но нельзя утверждать, как это делают некоторые ученики, обратное: если сумма углов равна 180°, то они являются смежными (прямые вертикальные углы равны в сумме 180°, но они не являются смежными). Одно и то же следствие (сумма углов 180°) имеет разные основания.
Учащимся восьмого класса были предложены пары посылок, из которых требовалось сделать выводы. Вот некоторые из них: «Если у человека повышена температура, то он болен. У человека не повышена температура». «Если данный четырехугольник является ромбом, то его диагонали взаимно перпендикулярны. Данный четырехугольник не является ромбом».
Подавляющее большинство учащихся и в первом, и во втором случае дали неверные ответы: они сделали вывод, что человек, не имеющий повышенной температуры, не болен, и что у данного четырехугольника диагонали не взаимно перпендикулярны.
Суть их ошибки состоит в том, что они сделали вывод с нарушением закона контрапозиции. В чем состоит этот закон? Этот закон нам указывает, когда мы имеем право делать вывод, а когда не имеем.