Аналогично организуется игра «Одинаковые по цвету». После каждой игры идет коллективная работа. Учитель спрашивает, какой общий признак у всех выложенных фигур. Дети отвечают: форма (цвет). Учитель просит уточнить, какая же форма у всех этих фигур (овальная, круглая и т.д.).
При усвоении понятия общий признак может быть использована также игра «Отгадай признак». Играют парами. Один ученик берет два предмета, имеющие один общий признак, второй ученик должен назвать этот признак, затем они меняются ролями и т.д. При работе с существенными признаками можно также предложить отгадывать предмет по названным признакам, например: твердый, прозрачный, холодный, скользкий, боится огня. Дети называют предмет (лед). При подготовке занятий такого рода надо отбирать существенные признаки предмета, а там, где это невозможно, - опознавательные. Например, в курсе природоведения можно детей научить распознавать рыб, птиц, млекопитающих. В качестве существенных признаков указываются: у птиц тело покрыто перьями; рыбы дышат жабрами; млекопитающие кормят своих детенышей молоком. Другие признаки, отражающие более существенные стороны этих видов живых существ, детям начальной школы пока недоступны.
Опыт работы с первоклассниками показывает, что они успешно используют эти признаки. Покажите детям кита или дельфина и попросите сказать, какое животное здесь изображено. Если дети не научены дифференцировать признаки на существенные и несущественные, то они обычно отвечают: «Рыба». Но если дети знают признаки рыб, птиц, млекопитающих, то они на ваш вопрос ответят своим вопросом: «А чем они дышат?» Мы пытались даже провоцировать детей, говоря: «Зачем тебе знать, чем дышат? Разве ты не видишь, на кого они похожи?» Ученики в ответ говорят: «Мало ли на кого похожи. Надо знать важные признаки». И когда мы говорили, что они дышат легкими, дети торжествовали и спрашивали дальше: «А чем они своих детей кормят?» Мы отвечали - молоком. И тут дети победно говорили: «Не рыба, млекопитающее», - и давали оценку нашему поведению: «Вы хотели, чтобы мы ошиблись». Некоторые из детей продолжали: «А мне мама читала книжку «Рыба-кит». Я ей скажу, что книжка неправильная, кит - не рыба».
В работе с разными признаками предметов используют и такую игру: дети рисуют многоэтажный дом или получают его готовую схему, где видны этажи и квартиры. Дается им также набор фигур. Предлагается каждую фигуру поселить на своем этаже, а ее свойства разместить по квартирам этого этажа (дети «расселяют» форму, цвет, материал, из которого сделана фигурка, обозначая все это соответствующими условными знаками). Такие задания полезны тем, что ребенок учится абстрагировать свойства предметов.
Покажем, какие методические приемы могут быть использованы при работе с видо-родовыми отношениями.
Учительница вызывает нескольких мальчиков и просит называть их свои имена. После этого учительница обращается классу и спрашивает: «А кто скажет, как всех стоящих назвать общим словом?» Дети обычно легко находят это слово: «Мальчики».
На этапе внешнеречевых действий можно давать детям, например, такие задания: учитель называет разные конкретные цвета, формы, а ученики обобщают их и обозначают родовым именем: цвет, форма. А при выполнении заданий на выделение в предметах разных свойств учитель предлагает детям обозначить их одним словом (признаки, свойства).
Следующий важный момент заключается в том, чтобы показать детям, что родовое понятие всегда шире, чем любое видовое.
С этой целью детям предлагаются задания на «учет» товаров, регистрацию зверей в зоопарке и т.д. В процессе работы используются различного рода метки, которыми отмечаются объекты. Например, детям предлагается провести учет обуви магазине. Дается карточка, где нарисовано восемь-девять пар разной обуви. Каждая пара обуви обозначается кружочком. Дети выкладывают на каждую пару обуви по кружочку. Когда они это сделали, учительница хвалит их, говорит: «Теперь мы можем собрать кружочки в конверт и будем знать, сколько у нас пар обуви в магазине. Но это не все. Нам надо еще знать, сколько пар детской обуви, а сколько взрослой (или: сколько пар светлой обуви и сколько темной и т.п.). Как теперь нам поступить?» Если дети привыкли уже работать с разными метками, то они сами предложат теперь использовать другие метки: одни - для детской обуви, другие - для взрослой. В случае необходимости это предложение вносит учитель. Желательно, чтобы дополнительные метки легко клеились. Можно использовать и другой способ крепления: в первых метках сделать надрезы, куда и будут вставляться новые (видовые). Допустим, детская обувь помечается квадратиками, а взрослая - треугольниками. После выполнения того задания учитель предлагает все метки расположить в один ряд. Эту операцию проделывает и учитель, выставляя метки на доске. Учитель обращается к ученикам и просит сказать, что же обозначают все выложенные метки. «Всю обувь в магазине». «Это сколько пар обуви в магазине». - «А что означают кружочки с квадратиками?» - «Детская обувь». «Столько детской обуви».
Учитель поощряет детей за хорошую работу и задает аналогичный вопрос про «кружочки с треугольниками».
«А теперь, - говорит учитель, - я задам вам трудный вопрос. Чего больше в магазине: обуви или детской обуви?» Ответы могут быть разные. Некоторые дети ответят правильно. Но найдутся и такие, которые дадут ложные ответы. Если окажется, что количество пар взрослой и детской обуви одинаковое, то ученики могут сравнить детскую обувь со взрослой и ответить: «Поровну». Учитель предлагает детям работать с метками и всем вместе найти правильный ответ.
Они приходят к выводу: когда речь идет об обуви в магазине, то надо учитывать все метки. Учитель объединяет дугой все множество. Когда же речь идет о детской обуви, то учитывается только часть меток. Можно предложить ученикам все метки, обозначающие детскую обувь, расположить в начале ряда. Учитель делает то же самое на доске и обводит детскую обувь дугой снизу. Теперь дети наглядно видят, что всей обуви больше, чем детской. Учитель еще раз специально показывает, что «вся обувь» - это все метки, а «детская обувь» - только часть их.
Аналогичную работу можно проделать с обувью для взрослых.
Дети с удовольствием составляют также «Учетную карту лесника», где надо разместить разных птиц или зверей. На заключительном этапе работы обязательно проделывается работа по сравнению объема родовых и видовых понятий. Учитель, в частности, может предложить детям определить, какие из названных предложений правильные, а какие нет. Например: «Ель - это дерево. Дерево - это ель»; «Медведь - это лесной зверь. Лесной зверь - это медведь» и т.д. Каждый раз ученики должны объяснить, почему одно из предложений является неверным.
На внешнеречевом этапе задания можно давать уже без средств материализации, в чисто речевом плане. (Разумеется, не исключено, что дети будут мысленно представлять метки. Но это уже большой шаг вперед по сравнению с материализованными действиями.)
Использовать надо хорошо знакомые детям предметы: ложки и чайные ложки, фрукты и яблоки, одежда и пальто.
На заключительных этапах работы можно использовать и обычно применяемые в логике круги. Весь круг обозначает новое понятие, а его части - видовые. Можно ввести и условные обозначения. Например, объем родового понятия обозначается одной буквой, а видового - другой. Если дети еще не знают к этому времени знаки «равно», «не равно», «больше», «меньше», то вводятся эти знаки. Теперь ученики могут записать отношения между родовыми и видовыми понятиями.
Уже в шесть лет дети успешно усваивают и начальные умозаключения. Вначале, работая с видо-родовыми отношениями, учитель показывает, что если А больше В, то В меньше А. В конце учебного года шестилетние дети успешно работают уже с более сложными отношениями: если А больше В, а В больше С, то А больше С. Введение связанных с величинами аксиом необходимо уже в первом классе, так как без этого невозможно обеспечить полноценное усвоение понятия о числе, о числовом ряде и др. как и в других случаях, в работе используются конкретные предметы. Постепенно дети знакомятся со знаками «равно», больше», «меньше», «не равно»'.
¢Разработка занятий сделана экспериментаторами М.В. Кралиной и Г.Г. Микулиной.
Вот одно из заданий.
Учитель предлагает детям налить воду в две банки: для ежика и для кошки. В каждую наливается по три одинаковых мерочки. Все выполняемые действия проговариваются, каждое выливание из мерочки отмечается меткой. В результате получается два ряда меток, в каждом по три. Учитель спрашивает, кому достанется воды больше: ежику или кошке? Дети соединяют последовательно в пары метки первого и второго ряда; видят, что лишних не осталось. Значит в первом ряду столько же меток, сколько и во втором. Мерочка была одна и та же. Делают вывод, что ежику и кошке воды достанется поровну. В дальнейшем учительница предлагает «зашифровать» их вывод. Каждую банку обозначают своей буквой и ставят между буквами знак равенства. На заданиях такого рода дети постепенно усваивают, что если мерки равные, ими измеряли одинаковое число раз, то и полученные величины будут равными. Аналогичным образом, измеряя по длине палочки, полоски бумаги путем прикладывания друг к другу, они усваивают, что если первый предмет равен второму, то и наоборот. И все это записывается. Например, итог сравнения красной и синей палочек по длине записывается так: К = С; С = К.
Когда дети усваивают аксиому о том, что если две величины порознь равны третьей, то они равны между собой, учительница сообщает, что в стране «Величиния»¢ будет праздник. Надо разучить парные танцы. Рост у танцоров в паре должен быть одинаковым. Вызываются два мальчика, у которых равный рост.