10.5. Роль определения понятия в процессе его усвоения
Мы показали, что понятие не может быть передано учащимся в готовом виде, они должны получить его сами, взаимодействуя с относящимися к нему предметами. Какова же роль определения в этом процессе взаимодействия? Определение задает как бы точку зрения - ориентировочную основу - для оценки предметов, с которыми взаимодействует обучаемый. Так, получая определение угла, ученик может теперь анализировать различные предметы с точки зрения наличия или отсутствия в них признаков угла. Аналогично, имея определение окружности, учащийся может анализировать различные формы объектов с точки зрения тех признаков, которые содержатся в определении окружности. Такая реальная работа по оценке различных предметов постепенно создает в голове ученика адекватное понятие как обобщенный и абстрактный образ предметов данного класса.
Таким образом, получение определения - это не конец усвоения понятия, а лишь первый шаг на этом пути. Следующий шаг - включение определения понятия в те действия учащихся, которые они выполняют с соответствующими объектами и с помощью которых строят в своей голове понятие об этих объектах.
Следующий важный шаг состоит в том, чтобы научить школьников ориентироваться на содержание определения при выполнении различных действий с объектами. Другими словами, надо добиться того, чтобы точка зрения, предложенная учителем, была принята и реально использовалась учащимися, т.е. входила в содержание ориентировочной основы выполняемых действий. Если это не обеспечено, то в одних случаях ученики будут опираться на свойства, которые они сами выделили в объектах; в других случаях дети могут использовать только часть указанных свойств; в третьих - могут добавить к указанным в определении свои, что также приводит к ошибкам. Если вернемся к вышеприведенным примерам, то обнаружим в них все эти случаи. Так, признавая за перпендикуляр вертикаль, школьник опирается на признак, которого нет в определении перпендикулярных прямых. Относя эллипс к классу окружностей, ученик учитывает лишь часть признаков указанных в определении окружности. Аналогичное имеет место и в примере с распознаванием смежных углов. При распознавании прямоугольных треугольников ученики, наоборот, привнесли дополнительный признак: пространственное положение прямого угла. С точки зрения этих учеников прямой угол не должен быть при вершине треугольника.
Итак, главная причина формализма при усвоении понятий состоит в том, что не уделяется должного внимания организации работы учащихся с определениями понятий. Только этим можно объяснить и такой удивительный факт, что десятилетиями в некоторых учебниках геометрии давались ошибочные определения, и этого не замечали ни учителя, ни методисты, ни ученики. В качестве примера возьмем учебник А.П. Киселева. До сих пор он считается одним из лучших и время от времени раздаются призывы вернуться к работе по этому учебнику. Не подвергая сомнению качество этого учебника в целом, отметим, что и в нем содержится немало неправильных определений понятий. В самом деле, прилежащие углы определяются как два угла, имеющие общую вершину и общую сторону. Если согласиться с этим и на основе именно этих свойств распознавать прилежащие углы, то мы должны будем отнести к прилежащим следующие углы: АОС и АОВ, а также углы АОС и ВОС.
![]()
В самом деле, эти углы имеют все признаки, которые указаны в определении: два угла, общая вершина (точка О) и общая сторона (в первом случае общей стороной является АО, во втором - ОС). Но эти углы не прилежащие. Следовательно, определение Киселева не позволяет корректно выделять класс прилежащих углов.
Аналогична ситуация с вертикальными углами. Они определяются как два угла, имеющие общую вершину, стороны одного угла продолжают стороны другого. Согласно данному определению, мы должны признать вертикальными не только углы АОВ и СОВ, но и углы АОD и угол, дополнительный к углу СОВ, так как он образован теми же лучами, что и угол СОВ, и вершина его находится в той же точке. На том же основании угол СОВ будет вертикален с углом, дополнительным к углу АОD.
![]()
Аналогичным образом можно доказать, что определение смежных углов, данное в учебнике Киселева, также является неверным. На этом перечень ошибок, содержащихся в учебнике Киселева, не заканчивается. Заметим, что многие из них были обнаружены учащимися, которых научили работать с определениями понятий. Когда же определение лежит мертвым грузом в памяти человека, то несостоятельность этого определения не обнаруживается.
10.6. Условия, обеспечивающие управление процессом усвоения понятий
Деятельностная теория усвоения позволяет управлять процессом усвоения понятий, формировать их с заданными качествами.
Достигается это через выполнение следующей системы условий.
Первое условие. Наличие адекватного действия: оно должно быть направлено на существенные свойства.
Второе условие. Знание состава используемого действия. Так, действие распознавания включает: а) актуализацию системы необходимых и достаточных свойств понятия; б) проверку каждого из них в предлагаемых объектах; в) оценку полученных результатов с помощью одного из логических правил распознавания (для понятий с конъюктивной и понятий дизъюнктивной системой признаков). При раскрытии содержания действия особое внимание уделяется его ориентировочной основе, которая должна быть не только адекватной, но и полной.
Третье условие. Представленность всех элементов действия во внешней, материальной (или материализованной) форме. Применительно к действию подведения под понятие это выглядит следующим образом. Система необходимых и достаточных признаков понятия выписывается на карточку, признаки материализуются (При усвоении, например, понятия перпендикулярные прямые даются модели прямой линии, прямого угла.) Материализуется логическое правило действия; дается такая схематическая условная запись':
![]()
' Система может, конечно, состоять из большего или меньшего числа необходимых и достаточных признаков.
Учащимся разъясняют, что плюс означает наличие соответствующего признака, минус - отсутствие, знак вопроса –«неизвестно» (невозможность дать определенный ответ). Плюс после вертикальной черты означает, что определяемый предмет подходит под данное понятие, знак минус - не подходит, знак вопроса - неизвестно, подходит или нет. Кроме того, указывается, что во втором и третьем случаях ответ не изменится, если минус и знак вопроса будут относиться не ко второму, а к первому признаку. Алгоритм распознавания выписывается также на карточку.
Четвертое условие - поэтапное формирование введенного действия. В случае использования действия подведения под понятие проведение его через основные этапы осуществляется следующим образом. На этапе предварительного знакомства с действием учащемуся, после создания проблемной ситуации, раскрывают назначение действия подведения под понятие, важность проверки всей системы необходимых и достаточных признаков, возможность получения разных результатов, все это поясняя на конкретных случаях в материализованной форме. После этого учащемуся предлагается самому выполнить действие (это уже материализованный этап).
Учащиеся, используя ориентиры (признаки, правила) в материальной или материализованной форме, устанавливают наличие необходимой системы признаков у предметов, задаваемых непосредственно или в виде моделей и чертежей. Результаты выполнения каждой операции фиксируются с помощью тех же условных знаков («+», «-», «?») на заранее заготовленных схемах.
Пятое условие - наличие пооперационного контроля при усвоении новых форм действия. Как было уже указано, контроль лишь по конечному продукту действия не позволяет следить за содержанием и формой выполняемой учащимися деятельности. Пооперационный контроль обеспечивает знание и того, и другого. При формировании понятий с помощью действия подведения под понятие в качестве операций выступает проверка каждого признака, сравнение с логическим правилом и т. д.
Естественно, что перед формированием действия подведения под понятие необходимо установить исходный уровень познавательной деятельности учащихся и произвести формирование необходимых предварительных знаний и действий. (Предварительные знания и действия, необходимые для формирования данного действия, были указаны в главе 5.)
Более подробно остановимся на поэтапном формировании понятий.
После выполнения пяти-восьми заданий с реальными предметами или моделями учащиеся без всякого заучивания запоминают и признаки понятия, и правило действия. Затем действие переводится во внешнеречевую форму, когда задания даются в письменном виде, а признаки понятий, правило и предписание называются или записываются учащимися по памяти. На этом этапе учащиеся могут работать парами, поочередно выступая то в роли исполнителя, то в роли контролера.
В том случае, когда действие легко и верно выполняется во внешнеречевой форме, его можно перевести во внутреннюю форму. Задание дается в письменном виде, а воспроизведение признаков, их проверку, сравнение полученных результатов с правилом учащийся совершает про себя. Учащийся все еще получает указания типа «Назови про себя первый признак», «Проверь, есть ли он» и т.д. Вначале контролируется правильность каждой операции и конечного ответа. Постепенно контроль осуществляется лишь по конечному результату и производится по мере необходимости.