Смекни!
smekni.com

Введение в психологию Аткинсон Смит Бем (стр. 26 из 278)

Эндокринная система

Нервная система управляет быстроменяющимися процессами в организме путем непосредственной активации мышц и желез. Эндокринная система действует медленнее и косвенно влияет на работу групп клеток всего организма посредством веществ, называемых гормонами. Гормоны выделяются в кровоток различными эндокринными железами и переносятся в другие части тела, где они оказывают специфические эффекты на клетки, распознающие их послания (рис. 2.18). Затем они проходят по всему телу, по-разному воздействуя на различные типы клеток. Каждая принимающая клетка имеет рецепторы, распознающие молекулы только тех гормонов, которым положено воздействовать на данную клетку; рецепторы захватывают из кровотока нужные молекулы гормонов и переносят их в клетку. Некоторые эндокринные железы активируются нервной системой, а некоторые — изменениями химического состояния внутри организма.

Рис. 2.18. Некоторые эндокринные железы. Гормоны, выделяемые эндокринными железами, не менее важны для согласованной работы организма, чем нервная система. Однако эндокринная система отличается от нервной по скорости действия. Нервные импульсы проходят по организму за несколько сотых долей секунды. Эндокринной железе требуются секунды и даже минуты, чтобы оказать эффект; после того как гормон выделен, он должен по кровотоку достичь нужного места, — а это намного более медленный процесс.

Одна из основных эндокринных желез — гипофиз — частично является отростком мозга и расположена как раз под гипоталамусом (см. рис. 2.11). Гипофиз называют «главной железой», потому что он производит больше всего различных гормонов и управляет секрецией других эндокринных желез. Одному из гормонов гипофиза принадлежит решающая роль в контроле за ростом организма. Если этого гормона слишком мало, может сформироваться карлик, если его секреция слишком высока — гигант. Некоторые продуцируемые гипофизом гормоны запускают в действие другие эндокринные железы, такие как щитовидная железа, половые железы и кора надпочечника. Ухаживание, спаривание и репродуктивное поведение многих животных основывается на сложном взаимодействии между деятельностью нервной системы и влиянием гипофиза на половые железы.

Нижеследующий пример взаимосвязи гипофиза и гипоталамуса показывает, насколько сложным является взаимодействие эндокринной и нервной систем. При возникновении стресса (страх, беспокойство, боль, эмоциональные переживания и т. д.) некоторые нейроны гипоталамуса начинают выделять вещество, называемое рилизинг-фактором кортикотропина (РФК). Гипофиз находится как раз под гипоталамусом, и РФК доставляется туда через структуру, напоминающую канал. РФК заставляет гипофиз выделять адренокортикотропный гормон (АКТГ), являющийся в организме основным стрессовым гормоном. В свою очередь АКТГ вместе с кровью попадает в надпочечные железы и другие органы тела, приводя к выделению около 30 различных гормонов, каждый из которых играет свою роль в приспособлении организма к стрессовой ситуации. Из этой последовательности событий видно, что на эндокринную систему влияет гипоталамус, а через гипоталамус на нее воздействуют другие мозговые центры.

Надпочечные железы в значительной степени определяют настроение человека, его энергию и способность справляться со стрессом. Внутренняя кора надпочечной железы выделяет эпинефрин и норэпинефрин (известные также как адреналин и норадреналин). Эпинефрин, часто совместно с симпатическим отделом автономной нервной системы, оказывает ряд воздействий, необходимых для подготовки организма к экстренной ситуации. Например, на гладкую мускулатуру и потовые железы он оказывает действие, сходное с действием симпатической системы. Эпинефрин вызывает сужение кровеносных сосудов желудка и кишечника и учащает биения сердца (это хорошо знают те, кому хотя бы раз делали укол адреналина).

Норэпинефрин тоже готовит организм к экстренным действиям. Когда, путешествуя вместе с кровотоком, он достигает гипофиза, последний начинает выделять гормон, воздействующий на кору надпочечника; этот второй гормон в свою очередь стимулирует печень, чтобы повысить уровень сахара в крови и создать у организма запас энергии для быстрых действий.

Функции гормонов, вырабатываемых эндокринной системой, сходны с функциями медиаторов, выделяемых нейронами: и те и другие переносят сообщения между клетками организма. Действие медиатора сильно локализовано, поскольку он передает сообщения между соседними нейронами. Гормоны, наоборот, проходят по организму большой путь и по-разному воздействуют на различные типы клеток. Между этими «химическими посыльными» есть важное сходство в том, что некоторые из них выполняют обе функции. Например, когда эпинефрин и норэпинефрин выделяются нейронами, они действуют как медиаторы, а когда их вырабатывает надпочечная железа — как гормоны.

Влияние генов на поведение

Чтобы разобраться в биологических основаниях психологии, надо иметь некоторое представление о роли наследственности. Генетика поведения, объединяя методы генетики и психологии, изучает наследование особенностей поведения (Plomin, Owen & McGuffin, 1994). Как мы знаем, многие физические характеристики — рост, строение костей, цвет волос и глаз и т. д.— являются наследственными. Генетика поведения пытается выяснить, в какой степени такие психологические характеристики, как умственные способности, темперамент, эмоциональная устойчивость и т. д., передаются от родителей к потомству (Bouchard, 1984, 1995).

Проведенные недавно исследования позволяют даже предположить, что интеллект содержит генетическую составляющую. Исследователям, работающим под руководством Роберта Пломина из Лондонского Института психиатрии, удалось идентифицировать ген, оказывающий влияние на интеллект (Plomin et al., 1998). Однако такие результаты нельзя считать окончательными. Как мы увидим далее в этом разделе, средовые условия тесно связаны с тем, как проявляется тот или иной генетический фактор в процессе созревания индивидуума.

Гены и хромосомы

Единицы наследственной информации, которую мы получаем от своих предков, как и той информации, которую мы передаем своим потомкам, переносятся специальными структурами — хромосомами; хромосомы есть в ядрах всех клеток организма. В большинстве клеток содержится 46 хромосом. При зачатии человек получает 23 хромосомы из спермы отца и 23 хромосомы из яйцеклетки матери. Из этих 46 хромосом образуются 23 пары, которые разделяются каждый раз при делении клетки (рис. 2.19).

Puc. 2.19. Хромосомы. На фото с сильным увеличением показаны 46 хромосом нормальной человеческой особи женского пола. У особи мужского пола пары с 1-й по 22-ю те же самые, но 23-я пара будет XY, а не XX.

Каждая хромосома содержит множество единиц наследственности, называемых генами. Ген — это часть молекулы дезоксирибонуклеиновой кислоты (ДНК), которая и является настоящим носителем наследственной информации. Молекула ДНК похожа на крученую лестницу или на спираль из двух нитей (рис. 2.20).

Рис. 2.20. Строение молекулы ДНК. Обе нити молекулы составлены из чередующейся последовательности сахара (S) и фосфата (Р); ступеньки этой крученой лестницы образованы четырьмя основаниями (А, Г, Т, Ц). Самовоспроизводство ДНК возможно благодаря двойному строению спирали и ограниченному количеству пар оснований. В процессе деления клетки две нити молекулы ДНК расходятся и пары оснований разделяются; на каждой нити остается по одному члену каждой пары. Затем каждая нить формирует себе новую вторую нить, используя имеющиеся в клетке лишние основания; прикрепленное к нити основание А притягивает основание Т и т. д. Таким образом вместо одной молекулы ДНК возникают две.

Ген — фрагмент молекулы ДНК, выдает клетке закодированные инструкции на выполнение определенной функции (обычно — изготовление определенного белка). Во всех клетках организма содержатся одни и те же гены, а специализация клеток объясняется тем, что в любой данной клетке активны только 5-10% генов. В процессе развития из оплодотворенного яйца каждая клетка включает некоторые гены, а все остальные выключает. Например, когда активированы «нервные гены», из клетки развивается нейрон, потому что эти гены заставляют клетку продуцировать то, что позволит ей выполнять нервные функции (что было бы невозможно, если бы не были выключены гены, не относящиеся к нейрону, например «гены мышц»).

Как и хромосомы, гены объединены в пары. В каждой паре один ген взят из хромосом спермы, а другой — из хромосом яйца. Поэтому ребенок получает только половину полного набора генов от каждого родителя. Общее число генов в каждой хромосоме человека — около 1000, может, и больше. Из-за такого большого количества генов крайне маловероятно, чтобы у двух человеческих существ оказалась одна и та же наследственная информация, даже если они кровные родственники. Единственное исключение — идентичные близнецы, у которых одни и те же гены, поскольку они развились из одного и того же оплодотворенного яйца.

Доминантные и рецессивные гены. Каждый из генов, входящих в пару, может быть доминантным или рецессивным (т. е. отступающим на задний план, подавленным. — Прим. перев.). Если оба образующих пару гена являются доминантными, то определенная черта индивидуума проявится в форме, определяемой этими доминантными генами. Если один ген доминантный, а другой рецессивный, то форму проявления черты индивидуума снова задает доминантный ген. И только если в этой паре гены, полученные от обоих родителей, являются рецессивными, проявится рецессивная форма данной характеристики. По принципу доминантности и рецессивности действуют, например, гены, определяющие цвет глаз. Ген голубых глаз — рецессивный, а ген карих — доминантный. Поэтому у ребенка с голубыми глазами оба родителя могут быть с голубыми глазами, или один родитель с голубыми, а другой — с карими (носитель рецессивного гена голубых глаз), или оба — с карими (оба несут рецессивный ген голубых глаз). Напротив, у ребенка с карими глазами не может быть обоих голубоглазых родителей.