Смекни!
smekni.com

Затменно-переменные звёзды и возможности их наблюдений любителями астрономии (стр. 3 из 4)

Из кривой блеска можно определить все 5 элементов. Особенно надёжно они вычисляются при полном затмении. Например, вычислим

и
. Допустим, что первая компонента с большим радиусом R1 закрывает вторую компоненту, имеющую радиус R2 .

Вне затмения мы воспринимаем полный блеск системы E; звёздная величина вне затмения – m0 . Во время полной фазы мы воспринимаем блеск только от большой звезды с блеском Е1, которая закрывает более яркую, но меньшую по размерам компоненту. Если звёздная величина во время полной фазы затмения m1 , то можно определить отношение блесков Е1к E:

(2.7)

Найдя по логарифму число, получим l1 , а затем найдём

Например, для уже упоминавшейся звезды UЦефея звёздная величина в максимуме

m0 =6,63, а во время полной фазы затмения m1=9,79. Поэтому в данном случае:

,

откуда

и

Значительно труднее определить r1и r2 , поскольку для этого нужно знать наклонение орбиты. Упростим задачу, положив (с некоторой погрешностью) i=90°, т.е. будем считать, что затмение полное и центральное. Рис.4 показывает обстоятельства затмения при двух положениях дисков компонент: вначале затмения (Рис.4, а) и вначале полной фазы (Рис.4 б).

В начале затмения диски компонент находятся во внешнем касании, поэтому видимое расстояние между их центрами равно

, а угол в орбите равен q1 . В начале полной фазы затмения диски находятся во внутреннем касании и расстояние между их центрами равно
, а соответствующий угол в орбите равен q2.

Из треугольников (см. рис.4) видно, что:

, (2.8)

где a – радиус относительной орбиты.

Рис.4

Рис.5

Чтобы решить эту систему уравнений относительно r1 и r2 , нужно знать углы q1 иq2 , их определяют из кривой блеска.

Если орбита круговая, то орбитальная скорость движения постоянна и угол q растёт пропорционально времени, увеличиваясь на 360° за один период P. По кривой блеска можно определить продолжительность затмения Dи продолжительность полной фазы dв долях периода. (Рис.5). Нетрудно видеть, что углы q1 иq2 связаны с величинами Dи dследующими соотношениям и:

(2.9)

Решая уравнения (2.8), можно получить значения r1 и r2 .

Для звезды UЦефея, часть кривой блеска которой изображена на рис.5, период P=2,493 суток. Из кривой блеска следует, что D=0,160 и d=0,039, откуда q1=28,8° и q1=7,02°. Решая уравнения (2.8), получаем r1=0,302 и r2=0,180.

Таким образом, в системе UЦефея относительный радиус большей звезды r1=0,302, а на долю её излучения приходится всего l1=0,0545 общего излучения системы. Малая же звезда несмотря на меньший радиус обладает гораздо большей светимостью. Такое распределение излучения между компонентами вызвано различиями их температур[1].

К сожалению, из кривой блеска нельзя определить ни абсолютные размеры системы, ни массы компонент. Для этого необходимы ещё и спектральные наблюдения, позволяющие определить лучевые скорости звёзд.

2.3 Элементы изменения блеска.

Изменение периодов затменно-переменных звёзд

В старой литературе по переменных звездам различают понятия "кривая блеска" (под которой традиционно понималась таблица, например, приведенного выше вида) и "график кривой блеска" (графическое представление этой таблицы). Такая терминология не соответствует общепринятому в науке словоупотреблению и нами применяться не будет.

Кривая блеска непериодической переменной звезды - это график зависимости звездной величины от времени. Если же изменения блеска имеют периодический характер, наглядность кривой блеска может быть значительно повышена, если привести наблюдения к одному периоду. Пусть элементы изменения блеска переменной звезды имеют вид:

(2.10)

Здесь T0 - начальная юлианская дата максимума (минимума) блеска

Р0 - период (в сутках);

Е - текущий номер эпохи максимума (минимума) блеска, отсчитываемый от момента T0.

Для любого момента времени T > T0 можно ввести величину Ф, которая называется фазой и выражается следующей формулой:

Ф = Fract {(T - T0) / P}, (2.11)

Известно, что период изменения блеска Алголя равен 2,86732 суток. Как можно определить его с такой точностью? Для этого сравнивают между собой достаточно удалённые по времени моменты минимума блеска. Каждое определение минимума редко бывает точнее 1-2минут, т.е. около 0,001 суток. Но, если разделить разность моментов минимумов на количество протекших между ними периодов, то точность определения среднего значения периода значительно повышается.

Формула (2.10) используется как для представления уже наблюдавшихся минимумов блеска затменно-переменных, так и для вычисления моментов будущих минимумов блеска. Вычисленные по ней моменты минимумов обозначают буквой С (от английского слова Calculated – вычислено), а наблюденные моменты – буквой О (от английского слова Observed –наблюдалось). Их разность обозначают О-С.

Сопоставление значений О-С с номерами Е даёт возможность судить о постоянстве или переменности периода. Для этого строится график О-С. Если период остаётся постоянным, то все точки расположатся около горизонтальной оси, с небольшими случайными отклонениями.

Если же график O-C представляет собой кривую линию, имеют место изменения периода. Здесь интересны следующие частные случаи. Если кривая - квадратичная парабола, то период - линейная функция времени. Рассеяние точек около синусоиды говорит о гармоническом законе изменения периода. Нередко график O-C удовлетворительно представляется ломаной линией. Это говорит о наличии интервалов времени, в течение которых период постоянен, меняясь между ними практически скачкообразно.

Причины изменений периодов весьма разнообразны. Например, переменная звезда b Лиры увеличивает свой период из-за непрерывной потери вещества. Наблюдался случай внезапного увеличения периода WБольшой Медведицы после вспышки её блеска, вызванной, извержением огромного протуберанца.

Другой причиной изменения периода является наличие третьей звезды в системе. Обычно третья звезда находится на большом расстоянии от затменной пары. Например система Алголя имеет третью компоненту, которая удалена от затменной пары так, что период её орбитального движения составляет 1,873 года.

Dt = -0d.0058 cosb cos(L- - l) (2.12)


где Dt - поправка к моментам наблюдений, l и b - эклиптические координаты звезды, L- - долгота Солнца в момент наблюдений. В более редких случаях особо быстрой переменности имеет смысл учитывать поправку, приводящую наблюдения не к центру Солнца, а к барицентру Солнечной системы. Эта поправка не превышает 16,6мин. и при наблюдении долгопериодических переменных ей можно пренебречь.

Глава 3.

Наблюдения затменно-переменных звёзд визуальными методами

Несмотря на бурное развитие современных высокоточных методов измерения блеска звёзд, любительские наблюдения переменных звёзд до сих пор не утратили своей ценности. Более того, если они проводятся целенаправленно, систематически и с использованием одного и того же инструмента, то полученные в результате данные могут принести пользу науке. Дело в том, что на сегодняшней день известно несколько десятков тысяч переменных звёзд. Естественно, за всеми звёздами учёные уследить не в состоянии. Кроме того, постоянно открываются новые переменные звёзды. Для многих тысяч звёзд элементы изменения блеска определены недостаточно точно и нуждаются в постоянной корректировке. И значительный вклад в это дело могут внести любители астрономии, имеющие в своём распоряжении даже простые бинокли.

На сегодняшний день самой крупной организацией, осуществляющая сбор и обработку наблюдений переменных звёзд, полученных из разных точек мира является Американская Ассоциация наблюдателей переменных звезд AAVSO (American Association of Variable Star Observers). Основателем данной организации стал любитель астрономии Вильям Олкотт. В октябрьском выпуске журнала “Популярная астрономия” за 1911г. он собрал воедино основные принципы и задачи новой любительской организации, которая смогла бы помочь профессиональным астрономам в исследованиях переменных звезд. К выходу следующего номера журнала эта группа объединяла шесть членов с 71 звездой для исследований. На сегодняшний день AAVSO имеет собственный современный офис, откуда осуществляется координация работы около шестисот наблюдателей из 40 стран, которые исследуют более 5 тысяч переменных звезд, и архив, содержащий около 7.5 миллионов (!) наблюдений отдельных звезд, многие из которых начаты еще в 1911 году. Сегодня все эти данные полностью систематизированы и доступны любому исследователю - как профессионалу, так и любителю через сеть Интернет (http://www.aavso.org). Наряду с исследовательскими задачами, ассоциация проводит большую работу по пропаганде своих достижений и привлечению в свои ряды новых членов и обучению их технике и методам наблюдений.Можно только сожалеть, что наши отечественные профессиональные астрономы никак не могут организовать подобного взаимодействия с достаточно многочисленной и зачастую высокообразованной армией российских любителей астрономии...