Смекни!
smekni.com

Психология, Дружинин В.Н. (стр. 51 из 189)

Если у временной теории были проблемы с высокими звуками, то у теории место­положения — с низкими звуками. В настоящее время представляется правдоподоб­ным предположение о существовании двух механизмов восприятия частоты: в то вре­мя как высокие частоты кодируются (трансформируются в психический образ) так, как это описано в теории местоположения, низкие частоты — в соответствии с вре­менной теорией (GreenD. М., 1976; GoldsteinE. В., 1989).

Зрение является основным источником информации для человека. Сетчатка гла­за имеет два типа рецепторов: палочки и колбочки. Палочки приспособлены к тому, чтобы работать при слабом освещении и давать черно-белую картину мира, а колбоч­ки, наоборот, имеют наибольшую чувствительность в условиях хорошего освещения и обеспечивают цветовое зрение. Наиболее интересной проблемой зрительных ощу­щений являются механизмы цветового зрения. На этот счет существует множество довольно сложных теорий. Мы рассмотрим лишь наиболее принципиальные подходы.

Одним из них является трихроматическая теория цветового зрения (иначе гово­ря, трехцветовая). Она состоит в следующем. Существует три различных типа рецеп­торов (колбочек), ответственных за цветовое зрение. Каждый из этих трех типов ре­цепторов обладает чувствительностью в широком диапазоне длины световой волны (длина световой волны связана с ощущением того или иного цвета), но в то же время разные типы колбочек специализируются на восприятии определенных цветов (си­него, зеленого или красного): одни обладают наилучшей чувствительностью в одной части диапазона длины волны, другие — в другой его части, третьи — в третьей. Свет определенной длины волны стимулирует каждую из трех групп рецепторов в неоди­наковой степени. Паттерны возбуждения — картина, сочетание, соотношение возбуж­дений — дают ощущения различных цветов и оттенков. К сожалению, трихромати­ческая теория не объясняет многих экспериментально полученных фактов из области цветового зрения.

Существует и альтернативная концепция — теория оппонентного цвета. С точки зрения сторонников этой теории, зрительная система состоит из двух типов чувстви­тельных к цвету элементов. Один тип реагирует на красную или зеленую часть спек­тра, другой — на синюю или желтую. Каждый элемент отвечает на внешнее воздей­ствие таким образом, что, если воспользоваться аналогией с чашей весов, один из двух оппонентных цветов может или перевешивать другой или находиться с ним в равном положении. Скажем, в паре синий—желтый перевешивает синий, а в паре красный-зеленый — красный. Что мы будем видеть? Смесь красного и синего, т. е. фиолетовый цвет. Если одна из пар сбалансирована, а другая нет, мы будем видеть один из чистых цветов. Если обе пары цветов между собой сбалансированы, мы не будем видеть ни­какого цвета.

Две рассмотренные теории конкурируют между собой более 50 лет. Каждая из них хорошо объясняет одни факты и плохо — другие. В силу этого неоднократно пред­принимались попытки примирить эти концепции и, подобно тому как это происходи­ло с теориями высотного слуха, создать некоторую общую теорию, включающую в себя в качестве частных случаев обе классические концепции.

11.3. Восприятие пространства и движения

Восприятие глубины и удаленности предметов. Для понимания того, что проис­ходит во внешнем мире, мало идентифицировать объекты, т. е. определить, что мы видим, слышим или осязаем, важно также знать, где это находится. Здесь мы сталки­ваемся с одной из фундаментальных проблем восприятия, а именно с проблемой локализации — определения местоположения объектов. Эта и другие проблемы вос­приятия будут рассмотрены нами на примере зрения. На это есть по меньшей мере две причины: во-первых, зрительный анализатор является ведущим в жизни челове­ка (по оценкам некоторых специалистов, до 90 % процессов обрабатываемой челове­ком информации приходится на зрительную сенсорно-перцептивную систему), во-вторых, зрительное восприятие изучено лучше других видов восприятия.

Один из основных вопросов восприятия глубины и удаленности предметов состо­ит в том, почему и за счет чего мы видим мир трехмерным, если на сетчатке глаза мы имеем только двухмерное (плоское) его изображение? Стремление ответить на по­ставленный вопрос привело к поиску признаков глубины и удаленности — особенно­стей стимульной ситуации, которые позволяют наблюдателю определить, насколько далеко объект находится от него самого и от других объектов.

Признаки, связанные с соотношением изображений, или проекций, объекта на сет­чатки разных глаз, называют бинокулярными признаками глубины и удаленности. Они существуют за счет того, что люди, как правило, видят и смотрят двумя глазами.

За счет того, что наши глаза находятся на некотором расстоянии друг от друга, каждый глаз смотрит на объект с несколько разных позиций. Следовательно, каждый глаз видит один и тот же предмет под разным углом. Это различие в направлениях, или угол между осями зрения двух глаз, называется бинокулярным параллаксом. Сен­сорная система «отслеживает» этот угол, его величина служит ей в качестве своеоб­разной подсказки, признака удаленности предмета: большой угол — предмет близко, маленький угол — предмет далеко. При этом картинки на сетчатках разных глаз по­лучаются неодинаковые. Различие в сетчаточных отображениях называется биноку­лярной диспарантностыо.

Чтобы убедиться в том, что каждый глаз получает свое изо­бражение предмета, проведите следующий опыт. Возьмите чашку и держите ее перед собой так, чтобы ручка чашки при взгляде обоими глазами была слегка видна — высовывалась из-за края чашки на полсантиметра. Пусть ручка будет справа от вас. Теперь закройте правый глаз. Ручка изчезла из поля зре­ния или, во всяком случае, несколько «уменьшилась». Открой­те правый глаз и закройте левый. Ручка снова появилась.

Мы можем воспринимать удаленность и глубину даже одним глазом. Известно, например, что люди, слепые на один глаз с рождения, воспринимают мир трехмерно. Следовательно, существуют некоторые признаки удаленности и глубины, связанные с изображением, получаемым одним глазом. В числе таких признаков обычно назы­вают линейную перспективу, суперпозицию, относительный размер предметов и гра­диент текстуры.

Линейная перспектива как признак удалености отражает тот факт, что прямые линии (например, рельсы) как бы сходятся, удаляясь от нас. Мы часто наблюдаем некоторый объект вписанным в координаты параллельных линий. И если, скажем, один объект находится там, где параллельные линии «сошлись» в большей степени, чем в том месте, где находится другой объект, то нам ясно, что первый из них нахо­дится на большем расстоянии от нас (рис. 11-6).

Какой вывод мы можем сделать по поводу относительной удаленности от нас двух объектов, один из которых заслоняет другой? Какой из них ближе: заслоняемый или заслоняющий? Ответ очевиден — заслоняющий. В данном случае при оценке удален­ности использовался признак суперпозиции (рис. 11-7).

При прочих равных условиях чем меньше проекция объекта на сетчатку, тем он воспринимается дальше. Это объясняется геометрией зрительной системы. Проек­ция объекта, находящегося в ста метрах от нас, больше проекции точно такого же объекта, удаленного от нас на расстояние километра (рис. 11-8). Два одинаковых по размеру предмета — А и Б — дают различные по размеру отображения на сетчатке, если находятся на различных расстояниях от наблюдателя.

Когда мы наблюдаем некоторую поверхность, например покрытый галькой берег моря, мы можем судить о глубине пространства по степени близости и размерам од­нородных объектов, находящихся на поверхности: чем дальше от нас некоторая точка пространства, тем плотнее «упакованы» ее элементы. Это пример признака удаленности и глубины, который получил название «градиент текстуры» (рис. 11-9).

Информацию об удаленности окружающих предме­тов нам также поставляет наше собственное движение и движение окружающих нас объектов. Движение приво­дит к тому, что проекция объектов на сетчатке меняет­ся, причем близко расположенные объекты кажутся нам двигающимися относительно быстрее удаленных, что и служит дополнительным признаком при оценке удален­ности. Вспомните вид из окна движущегося поезда: солнце неподвижно стоит на горизонте, еще можно ус­петь рассмотреть автомобили у шлагбаума, а деревья ле­сополосы пролетают мимо с огромной скоростью.

Восприятие движения. За счет чего мы воспринимаем какой-либо объект как дви­жущийся? На первый взгляд, ответ на этот вопрос может быть очень простым: это происходит за счет того, что проекция объекта, находящегося в движении, перемеща­ется по сетчатке. Но оказывается, что этот ответ не полон в том смысле, что переме­щение проекции по сетчатке не является ни необходимым, ни достаточным призна­ком движения.

Известно, что объект может восприниматься как движущийся, даже если его изоб­ражение не перемещается по сетчатке. Представьте себе, что на некотором расстоя­нии друг от друга находятся две лампочки. Первая зажигается на короткое время и гаснет, потом зажигается вторая и тоже гаснет и т. д. Если временной интервал меж­ду зажиганиями лампочек от 30 до 200 миллисекунд, нам кажется, что световая поло­са перемещается от одной точки к другой. Это явление называется стробоскопиче­ским эффектом. Он давно используется в мультипликации и световой рекламе.