Смекни!
smekni.com

Психология Немов Р С Книга 3 Психодиагностика (стр. 103 из 115)

Иногда в психолого-педагогическом эксперименте возника­ет необходимость сравнить дисперсии двух выборок для того, чтобы решить, различаются ли эти дисперсии между собой. До­пустим, что проводится эксперимент, в котором проверяется ги­потеза о том, что одна из двух предлагаемых программ или ме­тодик обучения обеспечивает одинаково успешное усвоение зна­ний учащимися с разными способностями, а другая программа или методика этим свойством не обладает. Демонстрацией спра­ведливости такой гипотезы было бы доказательство того, что ин­дивидуальный разброс оценок учащихся по одной программе или методике больше (или меньше), чем индивидуальный разброс оценок по другой программе или методике.

573


______ Часть II. Введение в научное психологическое исследование____

Подобного рода задачи решаются, в частности, при помощи критерия Фишера. Его формула выглядит следующим образом:

где п1—■ количество значения признака в первой из сравнивае­мых выборок; п2— количество значений признака во второй из сравниваемых выборок; {п1— 1, п21) — число степеней свобо­ды; 5f — дисперсия по первой выборке; Si дисперсия по вто­рой выборке.

Вычисленное с помощью этой формулы значение F-крите-рия сравнивается с табличным (табл. 34), и если оно превосхо­дит табличное для избранной вероятности допустимой ошибки и заданного числа степеней свободы, то делается вывод о том, что гипотеза о различиях в дисперсиях подтверждается. В про­тивоположном случае такая гипотеза отвергается и дисперсии считаются одинаковыми1.

Таблица 34

Граничные значения F-критерия для вероятности допустимой ошибки 0,05 и числа степеней свободы и, и и2

я, \.

3

4

5

6

8

12

16

24

50

3

9,28

9,91

9,01

8,94

8,84

8,74

8,69

8,64

8,58

4

6,59

6,39

6,26

6,16

6,04

5,91

5,84

5,77

5,70

5

5,41

5,19

5,05

4,95

4,82

4,68

4,60

4,58

4,44

6

4,76

4,53

4,39

4,28

4,15

4,00

3,92

3,84

3,75

8

4,07

3,84

3,69

3,58

3,44

3,28

3,20

3,12

3,03

12

3,49

3,26

3,11

3,00

2,85

2,69

2,60

2,50

2,40

16

3.-24

3,0

2,85

2,74

2,59

2,42

2,33

2,24

2,13

24

3,01

2,78

2,62

2,51

2,36

2,18

2,09

1,98

1,86

50

2,79

2,56

2,40

2,29

2,13

1,95

1,85

1,74

1,60

1 Если отношение выборочных дисперсий в формуле F-критерия оказы­вается меньше единицы, то числитель и знаменатель в этой формуле меняют местами и вновь определяют значения критерия.

574


Глава 3. Статистический анализ экспериментальных данных

Примечание. Таблица для граничных значений ^распреде­ления приведена в сокращенном виде. Полностью ее можно найти в справочниках по математической статистике, в частности в тех, которые даны в списке дополнительной литературы к этой главе.

Пример. Сравним дисперсии следующих двух рядов цифр с целью определения статистически достоверных различий меж­ду ними. Первый ряд: 4,6, 5,7,3,4,5,6. Второй ряд: 2,7, 3,6,1,8, 4, 5. Средние значения для двух этих рядов соответственно рав­ны: 5,0 и 4,5. Их дисперсии составляют: 1,5 и 5,25. Частное от деления большей дисперсии на меньшую равно 3,5. Это и есть искомый показатель F. Сравнивая его с табличным граничным значением 3,44, приходим к выводу о том, что дисперсии двух сопоставляемых выборок действительно отличаются друг от дру­га на уровне значимости более 95% или с вероятностью допусти­мой ошибки не более 0,05%.

Следующий метод вторичной статистической обработки, по­средством которого выясняется связь или прямая зависимость между двумя рядами экспериментальных данных, носит назва­ние метод корреляций. Он показывает, каким образом одно яв­ление влияет на другое или связано с ним в своей динамике. По­добного рода зависимости существуют, к примеру, между вели­чинами, находящимися в причинно-следственных связях друг с другом. Если выясняется, что два явления статистически досто­верно коррелируют друг с другом и если при этом есть уверен­ность в том, что одно из них может выступать в качестве причи­ны другого явления, то отсюда определенно следует вывод о на­личии между ними причинно-следственной зависимости.

Имеется несколько разновидностей данного метода: линей­ный, ранговый, парный и множественный. Линейный корреля­ционный анализ позволяет устанавливать прямые связи между переменными величинами по их абсолютным значениям. Эти связи графически выражаются прямой линией, отсюда название «линейный». Ранговая корреляция определяет зависимость не между абсолютными значениями переменных, а между поряд­ковыми местами, или рангами, занимаемыми ими в упорядочен­ном по величине ряду. Парный корреляционный анализ вклю­чает изучение корреляционных зависимостей только между па-

575


Часть II. Введение в научное психологическое исследование

рами переменных, а множественный, или многомерный, — меж­ду многими переменными одновременно. Распространенной в прикладной статистике формой многомерного корреляционно­го анализа является факторный анализ.

На рис. 74 в виде множества точек представлены различные виды зависимостей между двумя переменными X и Y (различ­ные поля корреляций между ними).

На фрагменте рис. 74, отмеченном буквой А, точки случай­ным образом разбросаны по координатной плоскости. Здесь по величине X нельзя делать какие-либо определенные выводы о величине У. Если в данном случае подсчитать коэффициент кор­реляции, то он будет равен 0, что свидетельствует о том, что до­стоверная связь между X и У отсутствует (она может отсутство­вать и тогда, когда коэффициент корреляции не равен 0, но бли­зок к нему по величине). На фрагменте Б рисунка все точки ле­жат на одной прямой, и каждому отдельному значению перемен­ной X можно поставить в соответствие одно и только одно зна­чение переменной У, причем, чем большее, тем больше Y. Такая связь между переменными X и У называется прямой, и если это прямая, соответствующая уравнению регрессии, то связанный с ней коэффициент корреляции будет равен +1. (Заметим, что в жизни такие случаи практически не встречаются; коэффициент корреляции почти никогда не достигает величины единицы.)

На фрагменте В рисунка коэффициент корреляции также бу­дет равен единице, но с отрицательным знаком: -1. Это означает обратную зависимость между переменными Xи У, т.е., чем боль­ше одна из них, тем меньше другая.

На фрагменте Г рисунка точки также разбросаны не случай­но, они имеют тенденцию группироваться в определенном на­правлении. Это направление приближенно может быть представ­лено уравнением прямой регрессии. Такая же особенность, но с противоположным знаком, характерна для фрагмента Д. Соот­ветствующие этим двум фрагментам коэффициенты корреляции приблизительно будут равны +0,50 и -0,30. Заметим, что кру­тизна графика, или линии регрессии, не оказывает влияния на величину коэффициента корреляции.

576


______ Глава 3. Статистический анализ экспериментальных данных

Рис. 74. Схематическое представление различных корреляционных зависи­мостей с соответствующими значениями коэффициента линейной корреля­ции (цит. по: Шерла К. Факторный анализ. М, 1980).