Смекни!
smekni.com

Что такое психология том 1 Годфруа Ж (стр. 112 из 115)

Третья разновидность процедур -это своего рода компромисс между первыми двумя типами. Она основана на применении правил и требует среднего объема памяти и манипулирования информацией. В нашем примере для этого достаточно знать таблицу умножения для первых 10 чисел, а затем произвести несколько операций. Схема расчета будет такой:

(10-10) + (2-10) + (10-2) + (2-2) = 144.

Типы процедур, используемых для решения проблем, зависят от имеющегося опыта, от необходимого числа повторений одной и той же операции и от емкости памяти.

Для того чтобы узнать, какое вино подходит к тому или иному блюду, мы можем последовательно перепробовать различные вина, использовать таблицу, в которой к каждому блюду рекомендуется

474 Глава 9

какое-то вино, или же использовать общие правила соответствия вин различным типам мясных блюд. Инженер, проектирующий мост, и астроном, отыскивающий на небе звезду, будут таким же образом выбирать нужный тип процедуры.

Можно провести еще одну параллель между работой человеческого мозга и компьютера при решении проблем. Речь идет о применении тех стратегий, которые мы рассмотрели в главе 8.

Поскольку компьютер может работать только по программе, рас­сматривать здесь случайный перебор бессмысленно. В случае если речь идет об игре, в которой такая стратегия не используется, было бы неэкономно «заставлять» компьютер искать решение задачи с помощью этой стратегии.

Остальные две стратегии используются как человеком, так и компью­тером.

Рациональный перебор соответствует эвристическому методу, при котором процессор занимается поисками частичных решений, чтобы максимально повысить вероятность нахождения приемлемого решения, сведя к минимуму время и усилия на его поиск.

Систематический перебор соответствует алгоритмическому методу; в этом случае систематически просматриваются все возможные (при имеющемся наборе данных) решения с целью найти то из них, которое , наиболее эффективно. Однако компьютер, так же как и человек, не использует эту последнюю стратегию для решения сложных задач. Например, при игре в шахматы алгоритмический метод потребовал бы того, чтобы компьютер для полной уверенности в выигрыше каждый раз просматривал 10120 возможностей. В подобных случаях выгоднее ис­пользовать эвристический метод, позволяющий с помощью ряда подпрограмм ограничивать поиски решений конкретными «узкими» зада­чами, такими как захват центра шахматной доски или атака на короля противника.

Искусственный интеллект и человеческое мышление

Искусственный интеллект - это специальная область науки, опираю­щаяся на информатику и другие дисциплины; ее главной задачей является разработка таких программ, которые придали бы компьютеру интеллект.

Существуют два подхода к проблеме искусственного интеллекта. Чаще всего исследователи используют подход «сверху вниз», при кото­ром разрабатываются экспертные системы, или «мыслящие Машины». Такие машины представляют собой настоящий электронный мозг, способный формулировать правила организации знаний, создавать ги­потезы и сопоставлять их с реальной действительностью с целью выработки новых решений. Второй подход-это путь «снизу вверх». При этом ученые разрабатывают системы, улавливающие различные виды информации (по типу глаза или уха), соединяют эти системы с обу-

Адаптация и творчество 475

чающимися сетями и с помощью таких моделей пытаются понять, как действует мозг при декодировании и интерпретации входных данных.

По мнению Моравеца (Университет Карнеги - Меллона), об «ис­кусственном интеллекте» можно будет по-настоящему говорить только тогда, когда эти два подхода, развивающиеся пока независимо, объе­динятся.

1. Мыслящие машины. Компьютеры, о которых мы до сих пор говорили, -это обычные электронные вычислительные машины, дей­ствующие по принципу цифровой обработки информации. Они имеют, с одной стороны, блок памяти, а с другой - обрабатывающее устройство; эти два блока по программе, составленной человеком, обмениваются двоичными сигналами, каждый из которых может принимать значения либо «да», либо «нет». Даже для таких машин уже созданы экспертные системы, благодаря которым они работают по меньшей мере так же эффект эффективно, как лучшие специалисты различных областей человеческого знания..

В последние годы некоторые биофизики -например, Хопфилд из Калифорнийского технологического института, -заинтересовались раз­работкой так называемых нейрокомпьютеров, функционирование ко­торых гораздо ближе к работе человеческого мозга. Такие компьютеры состоят из сетей, образованных соединенными между собой кремние­выми «нейронами». Роль синапсов здесь играют сопротивления в местах контактов между «нейронами». Преимущество таких сетей состоит в том, что им не обязательно нужно обладать всеми входными данными, чтобы предложить возможное решение проблемы. Их память, как и наша, функционирует по ассоциативному принципу: эти машины способны ассоциировать неполную входную информацию с информа­цией, уже имеющейся в памяти, и благодаря этому могут формулиро­вать вероятные ответы гипотетического характера («может быть...»). Память диффузно распределена по всей нейронной сети, и при уничто­жении части этой сети она не разрушается, а становится лишь менее четкой или более подверженной ошибкам.

С помощью подобной сети из нескольких десятков искусственных нейронов, соединенных с матрицей фоточувствительных элементов, Хопфилд смог добиться распознавания, например, буквы А независимо от конкретного варианта ее написания. Именно так ребенок усваивает алфавит. Для этого Хопфилду достаточно было сделать так, чтобы сеть сама могла изменять сопротивление своих связей при каждом предъяв­лении буквы А, написанной несколько различными способами. На одиннадцатом предъявлении машина распознала букву А за долю секунды.

Сайновски и Розенберг из Университета Джонса Гопкинса достигли еще большего: их машина NETtalk за одну ночь усвоила 1000 слов, прочитанных вслух из текста на английском языке. При использовании классических методов программирования это потребовало бы несколь­ких лет.

476 Глава 9

Подобные сети способны обучаться самостоятельно, и им не надо указывать, верен или неверен их ответ. Машине достаточно лишь запомнить состояние сети при предъявлении ей той или иной инфор­мации (например, буквы А), и тогда конфигурация, характерная для этой информации, автоматически воспроизводится при ее новом предъяв­лении. Такие сети способны в рекордное время выявить из 1032 воз­можных вариантов наиболее краткий путь, соединяющий между собой 30 точек (обычный компьютер решал бы такую задачу несколько дней). Ученые рассматривают уже возможность строить сети, разделенные, подобно мозгу, на области, у каждой из которых будет своя специ­фическая функция. Это позволит решать задачи вроде только что упомянутой за минимальное время, причем число точек может до­стигать 1000.

2. Сенсоры. Некоторых исследователей особо заинтересовал второй подход -путь «снизу вверх». Они пытаются создать машины, способные видеть и слышать. В качестве примера можно привести кремниевую «сетчатку», разработанную Карвером Мидом (Mead) из Калифорний­ского технологического института. Эта сетчатка представляет собой сеть из 100 тысяч транзисторов, собранных в микросхеме размером в не­сколько квадратных миллиметров. В этом устройстве имеются фото­чувствительные датчики, соединенные с несколькими слоями «нейро­нов», каждый из которых выполняет вполне определенную роль (как и в сетчатке животного; см. приложение А). Такая сеть преобразует входную информацию в электрические сигналы, и это позволяет не­прерывно и в режиме реального времени регистрировать изменения яркости и перемещения световых пятен. Далее устройство по кадрам анализирует входную картину, включая перемещения объектов и все изображение в целом (что обычная камера делать не может). Была разработана также «улитка» (для анализа звуков), более эффективная, чем у низших животных, обладающих этим органом. Кроме того, как уже говорилось выше (досье 8.1), Псалтис разрабатывает световые нейрокомпьютеры, в которых информация памяти записывается на голографические пластинки.

Таким образом, остается лишь соединить выходы подобных сен­соров с обучающейся сетью, играющей роль мозга и способной исполь­зовать получаемую информацию и вновь подавать ее в сеть, т.е. функционировать так же, как живые нервные клетки. Возможно, это уже дело ближайшего будущего.

Компьютер и ускорение умственного развития

Теория умственного развития ребенка, разработанная Пиаже, носит чисто описательный характер. В этой теории раскрываются этапы, через которые должен пройти ребенок, чтобы у него сформировалось «взрос­лое» мышление, но она мало что говорит о том, как можно развивать интеллект практически у каждого человека уже с самого раннего воз­раста.

477

Рис. 9 14 Благодаря появлению компьютеров в школе дети стали «учиться обучать».

Именно этим поиском основных принципов развития интеллекта занялись Пейперт и его сотрудники, изучавшие проблему искусственного интеллекта в Массачусетском технологическом институте.

Исходя из представления о том, что мы выучиваем больше и лучше, если сами кого-то учим, эти исследователи выдвинули систему, в кото­рой детям предлагается заставлять компьютер что-либо «делать», за­давая ему соответствующую программу. Таким образом, компьютер используется для выработки у детей привычки мыслить. По мнению этих ученых, истинная революция в педагогике состоит не в том, чтобы заменить преподавателей вычислительными машинами. Напротив, ком­пьютеры должны помогать преподавателям открывать новые пути обучения, позволяющие детям самим развивать свои умственные спо­собности в ритме, диктуемом критическими периодами. Компьютер можно также широко использовать для решения проблем, с которыми ребенок сталкивается в повседневной жизни.