Смекни!
smekni.com

Разработка онтологий 101: руководство по созданию Вашей первой онтологии (стр. 7 из 8)

В нашем примере есть пара обратных слотов: слот производитель класса Вино и слот производит класса Винный завод. Когда пользователь создает экземпляр класса Вино и заполняет значение слота производитель, система автоматически добавляет вновь созданный экземпляр к слоту производит соответствующего экземпляра класса Винный завод. Например, когда мы говорим, что SterlingMerlot производится на заводе SterlingVineyard, система автоматически добавляет SterlingMerlot к списку вин, которые производит завод SterlingVineyard (рис. 9).

Рис. 9. Экземпляры с обратными слотами. Слот производит класса Винный завод является обратным для слота производитель класса Вино. Заполнение одного из слотов приводит к автоматическому обновлению другого.

5.2. Значения по умолчанию

Многие фреймовые системы позволяют определить для слотов значения по умолчанию. Если значение определенного слота одинаково для большинства экземпляров класса, то мы можем определить это значение как значение слота по умолчанию. Затем, когда создается каждый экземпляр класса, имеющего этот слот, система автоматически заполняет значение по умолчанию. После этого мы можем изменить это значение на любое другое, которое позволят фацеты. То есть, значения по умолчанию созданы для удобства: в любом случае они не накладывают какие-либо ограничения на модель или никак ее не меняют.

Например, если большинство вин, о которых мы собираемся говорить, являются крепкими, то значение крепости вина мы можем сделать «крепкое» по умолчанию. Тогда все вина, которые мы определяем, будут крепкими, если мы не укажем иное.

Обратите внимание, что это отличается от значений слота. Значения слота не могут быть изменены. Например, мы можем сказать, что слот сахар класса Десертное вино имеет значение «СЛАДКОЕ». Тогда у всех подклассов и экземпляров класса Десертное вино значение слота сахар будет «СЛАДКОЕ». Для всех подклассов или экземпляров этого класса это значение изменить нельзя.

6. Об именах

Определение единых правил присваивания имен понятиям в онтологии, а затем строгое соблюдение этих правил не только делает онтологию более простой для понимания, но также помогает избежать некоторых общих ошибок при моделировании. Существует много вариантов присваивания имен понятиям. Обычно нет особой причины для выбора того или иного варианта. Тем не менее, нам нужно

Определить единые правила присваивания имен классам и слотам и придерживаться их.

На выбор правил присваивания имен влияют следующие особенности системы представления знаний:

Имеет ли система одно и то же пространство имен классов, слотов и экземпляров? То есть, позволяет ли система иметь класс и слот с одинаковым именем (как, например, класс винный завод и слот винный завод)?

Различает ли система регистр букв? То есть, считает ли система разными имена, которые отличаются только регистром (как Винный завод и винный завод)?

Какие разделители в именах позволяет использовать данная система? То есть, могут ли имена содержать пробелы, запятые, звездочки и т.д.?

К примеру, Protеgе-2000 имеет единое пространство имен для всех своих фреймов. Она различает регистр букв. Таким образом, у нас не может быть класса винный завод и слота винный завод. Однако у нас может быть класс Винный завод (не прописные буквы) и слот винный завод. С другой стороны, CLASSIC не различает регистр букв и имеет разные пространства имен для классов, слотов и индивидных концептов. Таким образом, с точки зрения системы, мы можем с легкостью присвоить имя Винный завод и классу, и слоту.

6.1. Заглавные буквы и разделители

Во-первых, мы можем значительно улучшить читаемость онтологии, если мы все время будем писать названия понятий с большой буквы. Например, общепринято начинать имена классов с большой буквы, а имена слотов – с маленькой (предполагая, что система различает регистр букв).

Когда имя понятия содержит больше одного слова (как в Винный завод), нам нужно разделить слова. Вот возможные варианты:

Использовать пробел:Винный завод (многие системы, включая Protеgе, позволяют использовать пробелы в именах понятий).

Соединить слова вместе и каждое слово написать с большой буквы: ВинныйЗавод.

Использовать в имени подчеркивание или тире, или другой разделитель: Винный_Завод, Винный_завод, Винный-Завод, Винный-завод (если вы используете разделитель, вам также нужно решить, писать каждое слово с большой буквы или нет).

Если система представления знаний позволяет использовать пробелы в именах, то для многих разработчиков онтологий пробелы могут быть самым естественным решением. Однако важно учитывать другие системы, с которыми может взаимодействовать ваша система. Если в этих системах не используются пробелы или ваше средство представления не очень хорошо обрабатывает пробелы, то может быть лучше использовать другой метод.

6.2. Единственное или множественное число

Имя класса представляет набор объектов. Например, класс Вино в действительности представляет все вина. Поэтому для многих разработчиков было бы естественнее дать классу имя Вина, а не Вино. Ни один из вариантов не лучше и не хуже другого (хотя на практике для имен классов чаще используется единственное число). Тем не менее, каким бы ни был выбор, его следует придерживаться на протяжении всей онтологии. Некоторые системы даже требуют от своих пользователей заранее объявить, какое число (единственное или множественное) они будут использовать в именах классов, и не дают им отклоняться от своего выбора.

Использование все время одной и той же формы также предотвращает такие ошибки разработчика при моделировании, как создание класса Вина, а затем создание класса Вино как его подкласса (см. Раздел 4.1).

6.3. Договоренность в отношении использования префиксов и суффиксов

Некоторые методологии по базам знаний советуют придерживаться договоренности в отношении использования префиксов и суффиксов в именах для того, чтобы различать классы и слоты. Существует две распространенных традиции: добавлять к именам слотов has-[6] или предлог –of[7]. Таким образом, наши слоты меняются на его-производитель и его-винный_завод, если мы выберем использование его-. Слоты меняются на maker-of и winery-of[8], если мы выберем использованиеof-. Этот подход позволяет любому, кто посмотрит на термин, сразу же определить, что это: класс или слот. Однако имена терминов становятся немного длиннее.

6.4. Другие соображения по присваиванию имен

Еще несколько моментов, которые нужно иметь в виду при определении правил присваивания имен:

Не добавляйте к именам понятий такие строки как «класс», «свойство», «слот» и т.д.

Из контекста всегда ясно, что это, к примеру, класс или слот. В дополнение к тому, что для классов и слотов вы используете разные правила присваивания имен (скажем, пишете их с большой и с маленькой буквы соответственно), само имя будет показывать, чем является это понятие.

Обычно лучше не сокращать имена понятий (то есть, используйте CabernetSauvignon, а не Cab).

Имя надкласса должно входить или во все имена прямых подклассов, или ни в одно из них. Например, если мы создаем два подкласса класса Вино для представления красных и белых вин, то подклассы должны называться или Красное Вино и Белое Вино, или Красное и Белое, но не Красное Вино и Белое.

7. Другие ресурсы

В наших примерах в качестве среды разработки онтологий мы использовали Protege-2000. Duineveld с коллегами описывает и сравнивает ряд других сред для разработки онтологий.

Мы постарались рассказать о самом основном о разработке онтологий и не коснулись многих углубленных тем или альтернативных методологий разработки онтологий. Gуmez-Pйrez и Uschold представляют альтернативные методологии разработки онтологий. В руководстве по Ontolingua говорится о некоторых формальных аспектах моделирования знаний.

В настоящее время исследователи придают особое значение не только разработке онтологий, но также и анализу онтологий. Чем больше онтологий будет создаваться и повторно использоваться, тем больше будет инструментальных средств для анализа онтологий. К примеру, Chimaera предоставляет диагностические инструментальные средства для анализа онтологий. Анализ, который осуществляет Chimaera, включает как проверку логической верности онтологии, так и диагностику типичных ошибок при проектировании онтологий. Разработчик онтологий может провести диагностику разрабатываемой онтологии с помощью Chimaera, чтобы определить соответствие общим способам моделирования онтологий.

8. Заключение

В этом руководстве мы описали методологию разработки онтологии для декларативных фреймовых систем. Мы перечислили шаги при разработке онтологии и затронули сложные вопросы определения иерархий классов и свойств классов и экземпляров. Тем не менее, помимо всех правил и советов, следует помнить одну из важнейших вещей: для любой предметной области не существует единственно правильной онтологии. Проектирование онтологии – это творческий процесс и две онтологии, разработанные разными людьми, никогда не будут одинаковыми. Потенциальные приложения онтологии, а также понимание разработчиком предметной области и его точка зрения на нее будут, несомненно, влиять на принятие решений при проектировании онтологии. “Цыплят по осени считают” – мы можем оценить качество нашей онтологии, только используя ее в приложениях, для которых мы ее разработали.