Классическая аристотелевская логика начала уже формализовать дедуктивный вывод. Дальше эту тенденцию продолжила математическая логика, которая разрабатывает проблемы формального вывода в дедуктивных рассуждениях.
Под термином “дедукция” в узком смысле слова понимают также следующее:
Метод исследования, заключающийся в следующем: для того, чтобы
получить новое знание о предмете или группе однородных предметов, надо, во - первых найти ближайший род, в который входят эти предметы, и, во - вторых, применить к ним соответствующий закон, присущий всему данному роду предметов; переход от знания более общих положений к знанию менее общих положений. Дедуктивный метод играет огромную роль в математике. Известно, что все доказуемые предложения, то есть теоремы выводятся логическим путем с помощью дедукции из небольшого конечного числа исходных начал, доказуемых в рамках данной системы, называемых аксиомами.
Классики марксизма - ленинизма неоднократно указывали на дедукцию, как на метод исследования. Так, говоря о классификации в биологии, Энгельс отмечал, что благодаря успехам теории развития классификация организмов сведена к “дедукции”, к учению о происхождении, когда какой - нибуть вид буквально дедуцируется из другого. Энгельс относит дедукцию, наряду с индукцией, анализом и синтезом, к методам научного исследования. Но при этом он указывает, что все эти средства научного исследования являются элементарными. Поэтому дедукция как самостоятельный метод познания недостаточно для всестороннего исследования действительности. Связь единичного предмета с видом, вида с родом, которая отображается в дедукции, - это только одна из сторон бесконечно многообразной связи предметов и явлений объективного мира.
2) Форма изложения материала в книге, лекции, докладе, беседе, когда от общих положений, правил, законов идут к менее общим положениям, правилам, законам.