Смекни!
smekni.com

О воспитательном эффекте уроков математики (стр. 2 из 7)

Чему же может и должна научить школьника та суровая критика по адресу не вполне обоснованных обобщений, с какой он встречается в математике? Конечно, он не должен стараться переносить такого рода требования на выводы других наук и тем более на практические жизненные ситуации. Требование абсолютной полноты индукции специфично для математического метола и совершенно невыполнимо ни в естественных науках, ни в практической жизни. Но привычка с критической тщательностью проверять законность всякого обобщения, привычка твердо помнить, что замеченное во многих случаях еще не обязано тем самым иметь место во всех случаях и что закономерности, установленные на основе хотя бы и многих единичных наблюдений и опытов, требуют поэтому все новой и новой проверки, — все эти важнейшие методологические навыки, необходимые в любой научной и практической деятельности, в значительной степени воспитываются и укрепляются вместе с повышением математической культуры. Это процесс, который мы каждодневно видим происходящим на наших глазах.

2. Борьба против необоснованных аналогий. Заключения по аналогии служат обычным и законным приемом установления новых закономерностей как в эмпирических науках, так и в обыденной жизни. Если, допустим, естествоиспытатель помнит, что все встречавшиеся ему до сих пор виды, обладавшие признаками А и В, обладали также и признаком С, и если он нашел новый вид, у которого обнаружены признаки А и В, то он, естественно, заключит, что этот новый вид обладает также и признаком С. Такое заключение по аналогии значительно выигрывает в убедительности, если к чисто эмпирическим данным, описанным выше, присоединяются, как это часто бывает, какие-либо теоретические соображения, заставляющие предполагать, что совместное наличие признаков А, В и С является не случайным, а обосновано теми или другими общими принципиальными соображениями. Но только в математике возможно — и вместе с тем совершенно необходимо — требовать, чтобы эти принципиальные соображения были доведены до степени исчерпывающего доказательства. Либо мы со всей строгостью доказали, что из наличия признаков А и В с неизбежностью вытекает и наличие признака С, либо, если нам не удалось доказать этого с исчерпывающей полнотой, нам запрещается делать из наличия признаков А и В какие бы то ни было выводы относительно признака С. Но в первом случае (т. е. когда доказана теорема "Из А и В следует С") простое применение этой общей теоремы к конкретным частным случаям уже вряд ли может быть названо заключением по аналогии.

Будет, таким образом, правильно сказать, что в математике заключения по аналогии категорически запрещены (что не должно, конечно, умалять огромного эвристического значения заключений по аналогии), в то время как в эмпирических науках и практической деятельности заключениям по аналогии принадлежит почетная роль одного из основных приемов вывода новых закономерностей. Поэтому снова встает вопрос о том, что же в этом отношении могут дать уроки математики для воспитания общей культуры мышления. И снова приходится ответить на это то же, что и прежде: математическая вышколенность ума, привыкшего к тому, что заключение по аналогии может служить лишь эвристическим прием ом, который сам по себе еще не имеет доказательной силы, неизбежно приучает прошедшего эту школу человека и во всех других областях мышления относиться к такого рода заключениям с большом осторожностью, памятуя, что во всех таких случаях нельзя без основательной проверки считать полученное заключение твердо установленным. Каждый из нас испытал в свое время на себе воспитывающее влияние этой особенности математического мышления, и каждодневно мы наблюдаем, как влияние это содействует повышению мыслительной культуры наших воспитанников. Критическое отношение к заключениям по аналогии есть один из важнейших показателей, отличающих правильно воспитанное научное и практическое мышление от первобытного, обывательского, и занятия математикой всегда служат одним из основных средств воспитания этого важнейшего показателя.

3. Борьба за полноту дизъюнкций. Когда математик доказывает какое-либо общее свойство всех треугольников, то иногда ему приходится проводить доказательство отдельно для остроугольных, прямоугольных и тупоугольных треугольников. Известно, как часто в таких случаях начинающие делают ошибки, в особенности в тех случаях, когда рассуждение сопровождается ссылкой на чертеж; чертится, например, остроугольный треугольник, и рассуждение опирается на добавочные построения, которые либо невозможны, либо теряют доказательную силу, если выбранный треугольник имеет тупой угол. В математике такое рассуждение признается ошибочным, так как здесь нарушено основное требование полноты дизъюнкции: не предусмотрены все возможные разновидности данной ситуации, одна из них выпала из поля зрения.

В обыденных, не научных рассуждениях это требование нарушается на каждом шагу. Рассмотрев две-три наиболее часто встречающиеся или наиболее бросающиеся в глаза разновидности данной ситуации и убедившись, что в каждом из этих случаев мы неизбежно встречаемся с некоторым событием А, мы заключаем, что это событие А сопутствует данной ситуации во всех случаях, хотя на самом деле данная ситуация может иметь, кроме двух-трех изученных нами, еще десяток других разновидностей, и среди этих разновидностей, скинутых нами со счета, могут быть и такие, в которых наступление события А вовсе необязательно. Мы говорим, на пример, что ученика Иванова вообще нельзя дисциплинировать, потому что на него испытанным образом не действуют ни ласка, ни угрозы. Мы забываем при этом, что лаской и угрозами не исчерпываются еще все разновидности приемов дисциплинирующего воздействия, что существует еще, например, метод спокойного убеждения и что. стало быть, наша дизъюнкция страдает неполнотой. Мы часто наблюдаем, как начинающий, рассмотрев при исследовании какого-нибудь уравнения случай, когда некоторый данный коэффициент положителен, а затем случай, когда этот коэффициент отрицателен, тем самым считает, что он провел исследование во всех случаях, забывая, что изучаемый коэффициент может оказаться равным нулю. Здесь также мы видим неполноту дизъюнкции, которая может привести и фактически приводит к тяжелым ошибкам в выводах.

В противоположность тем двум требованиям, которые мы рассматривали выше, требование полноты дизъюнкции, учета всех возможных разновидностей изучаемой ситуации является необходимой принадлежностью не только математического, но и всякого правильного мышления. Аргументация, в которой не учтены все имеющиеся возможности, всегда оставляет место для законных возражении и потому не может быть признана полноценной. Военачальник, предпринимая какой либо маневр, при учете его последствий должен предвидеть все возможные ответы врага; просмотр хотя бы одного из них может оказаться гибельным. Юридический кодекс в каждой статье обязательно должен охватывать все мыслимые разновидности данной ситуации, иначе он ставит судью перед необходимостью решать дела по своему произволу.

Но нигде требование безукоризненной чистоты дизъюнкции не выставляется так явно и категорически, как в математике, и никто не обрушивается с такой быстротой и беспощадностью на замеченный просмотр в дизъюнкции, как вышколенный математик.

Вот почему уроки математики должны воспитывать и действительно воспитывают в мышлении учащихся этот важнейший закон правильного рассуждения в несравненно большей мере, чем занятия другими предметами.

4. Борьба за полноту и выдержанность классификации. Классифицирует не только ученый-теоретик в своем кабинете, классификацией приходится очень часто заниматься и практическому работнику, инженеру, врачу, учителю, статистику, агроному. Общеизвестно, что невышколенный ум склонен допускать, производя классификацию, ряд типических ошибок; наиболее распространенными из таких ошибок являются нарушение полноты классификации и нарушение ее выдержанности, единопринципности. Нарушение полноты классификации состоит в том, что остаются понятия, не входящие ни в один из названных классов, и что, стало быть, названы не все классы. Простые примеры: на вопрос "Какие ты знаешь растения?" школьник отвечает: "Травы и деревья", забывая о кустарниках, лишайниках и многих других типах; войсковые части делятся на сухопутные, водные и воздушные (упускаются интендантские, части связи и многие другие); натуральные числа делятся на простые и составные (упускается число 1); вещественные числа делятся на положительные и отрицательные (упускается нуль).

Требование полноты классификации формально аналогично рассмотренному нами выше требованию полноты дизъюнкции, но, конечно, отлично от него по содержанию. Там шла речь об обязательности охвата всех могущих возникнуть ситуаций, здесь же о необходимости перечисления всех разновидностей некоторого понятия. Но здесь, как и там, явно и неукоснительно требование полноты классификации провозглашается в математике преимущественно перед всеми другими науками, и потому уроки математики более всех других воспитывают в школьнике этот обязательный элемент правильного мышления.

Требование выдержанности классификации состоит в том, чтобы она проводилась по единому принципу, по единому признаку. Это требование, при строго правильном мышлении совершенно обязательное, очень часто нарушается не только в обывательских рассуждениях, но и в серьезной практике. Вот простые примеры такой невыдержанной классификации: суда делятся на весельные, парусные, моторные и военные; очевидно, классификация начата по принципу различных движущих сил, и последняя рубрика этот принцип нарушает, другой пример: обувь подразделяют на кожаную, брезентовую, резиновую и модельную — та же картина. Конечно, подобного рода перечисления не всегда претендуют на роль классификации, и в таких случаях соблюдение единого принципа необязательно (например, объявление: завод приглашает на работу плотников, штукатуров, женщин и подростков). Но во всех случаях, когда такому перечислению приписывается классифицирующая функция, невыдержанность разделяющего принципа вызывает такую неотчетливость всей схемы, которая может привести и к теоретическим смешениям, и к практической путанице. Поэтому логически вышколенный ум всегда ощущает недостаток выдержанности классификации как существенный дефект рассуждения. И снова наиболее чувствительна к этому дефекту математическая наука, и поэтому именно на уроках математики школьник преимущественно развивает в себе эту потребность видеть всякую классификацию выдержанной, построенной на едином классифицирующем принципе.