План:
Дифференциальный каскад:
Парные усилители и квазиидеальный дифференциальный каскад
Подавление синфазного сигнала квазиидеальным ДК
Квазиидеальный ДК и его выходной сигнал
Несовершенство простого реального ДК как причина развития техники сложных ДК
Параметры ДК:
Усилительные параметры
Входные сопротивления
Неидеальный источник эмиттерного тока ДК
Синфазный сигнал и CMRR
Бисекция для расчета режима ДК по постоянному току
Синфазное входное сопротивление ДК
Введение.
Дифференциальный каскад (ДК) представляет собой мостовую схему, в плечах которой включены идентичные элементы. В аналоговых интегральных микросхемах вследствие того, что все элементы создаются в едином технологическом процессе, практически обеспечивается идентичность резисторов и транзисторов. ДК питается от двухполярного источника питания с заземленной средней точкой, что позволяет подавать сигналы непосредственно на базы транзисторов. Если входы транзисторов заземлены, то токи транзисторов одинаковы, и вследствие идентичности резисторов Rk1 и Rk2 напряжение на дифференциальном выходе Uвых.д меду колекторами будет равно нулю. Если на входы схемы поданы сигналы одинаковые по величине и фазе, называемые синфазными, то токи обоих транзисторов будут изменяться на одинаковую величину, соответственно будут изменяться напряжения Uвых1 и Uвых2,а напряжение Uвых.д по-прежнему будет сохранаться равным нулю. Если на входы схемы поданы одинаковые по величине, но сдвинутые по фазе на 180* сигналы, называемые дифференциальными, то возрастание тока в одном плече будет сопровождаться уменьшением тока в противоположном, вследствие чего появится напряжение на дифференциальном выходе. Таким образом, схема в идеальном случае реагирует на дифференциальный сигнал и не реагирует на синфазный. Изменение температуры, паразитные наводки, старение элементов, флуктуация параметров транзисторов можно рассматривать как синфазные входные воздействия. Следовательно, ДК обладает очень высокой устойчивостью работы и малочувствителен к помехам.
Дифференциальный каскад.
Парные усилители и квазиидеальный дифференциальный каскад (ДК).
Изображенные на рисунке 1 а «почти» одинаковые транзисторы Т2 и Т1 образуют два несвязных друг с другом усилителя.
При подаче входных напряжений U2и U1 напряжения на выходах усилителей Uвых2 и Uвых1можно записать через почти одинаковые коэффициенты усиления К1 и К2 в виде
Uвых2 = К2 *U2 ,
(1)
Uвых1 = К1 *U1 .
Рис. 1Парные усилители и квазиидеальный дифференциальный каскад: а) “почти” одинаковые транзисторы Т2 и Т1; б) те же Т2 и Т1 включены в цепь сДК с идеальным генератором тока I0 в эмиттерной цепи (вместе резисторов Ree цепи а)
Разность (дифференциал) выходных напряжений составит
DUвых =Uвых2 -Uвых1 = К2 *U2 - К1 *U1 . (2)
Представим входные напряжения в виде суперпозиции синфазной Uс и дифференциальной Ud составляющих:
U2 =Uс + Ud , (3)
U1 =Uс-Ud .
Откуда:
Ud = (U2 -U1 )/2, Uc = (U2 +U1 )/2. (4)
Подставив (3) в (2), получим:
DUвых = К2 * (Uс + Ud ) - К1 * (Uс - Ud ) = Uс * (К2 –К1) + Ud * (К2 +К1). (5)
Введя синфазный коэффициент усиления
Кс = К2 –К1 (6)
и дифференциальныйкоэффициент усиления
Кd= К2 +К1 , (7)
запишем (5) в виде:
DUвых = Uс* Кс + Ud* Кd. (8)
Пара (рис 1а) осуществляет, таким образом, вычитание сигналов на выходах усилителей; разность DUвых (формулы 2, 8) наблюдается между коллекторными выходами транзисторов Т2 и Т1.
Дифференциальный каскад (ДК, рис 1б) реализует вычитание сигналов на входах усилителей; разность DUвых /2 = dUвых наблюдается между коллектором Т1 и землей. При этом формулы (3-8) для ДК оказываются справедливыми (если заменить DUвых на dUвых =DUвых /2).
Вследствие наличия генератора тока в квазиидеальном ДК потенциал общей точки его эмиттеров (е на рис.1б) обычно близок к нулевому.
Подавление синфазного сигнала квазиидеальным ДК.
Пользуясь (8), рассмотрим следующие частотные случаи:
1. Если К2 = К1 (плечи одинаковы), то
dUвых =DUвых = Ud* Кd. (8а)
При этом ДК становится идеальным, а синфазный сигнал полностью подавляется.
2. Если Uс = 0, то dUвых / Ud =Uвых / Ud = Kd, где Kd (коэффициент усиления дифференциального сигнала) определяется формулой (7). При этом синфазный сигнал отсутствует.
3. Если Ud = 0, то DUвых / Uс = Kс = К2 –К1. Это коэффициент усиления синфазного сигнала, определяемый формулой (6).
Для общего случая, когда присутствуют и дифференциальные и синфазные сигеналы, используем выражение (8). Вынеся Ud* Кdза скобки, получим:
dUвых = Ud/2 * Kd/2 * (1 + Uс*Kс / Ud*Kd ). (9)
Введя в (9) коэффициент подавления синфазного сигнала (Common Mode Rejection Ratio, CMRR),
CMRR = Kd /Kс, (10)
Получим: dU0= Ud*Kd (1+ Uс/ Ud *CMRR )/2. (11)
Второй терм в скобках выражений (8-10) для ДК весьма мал. При полной симметрии плеч и идеальном эталоне тока, подключенном к точке e рис 1б(т.е. для идеального ) имеем:
CMRR= ¥. (12)
Идеальный ДК и его выходной сигнал.
Сигнал, снимаемый с правого плеча ДК рис. 1б и отсчитываемый относительно земли, составляет
dUвых1 = Uвых1 = DUвых/2, (13)
Выразив dUвых = Uвых и Ud по формулам (7) и (3) и введя Кn – собственный или номинальный (дифференциальный) коэффициент усиления ДК
Кn = Кd /2, (14)
И виртуальную разность
Un=U2 -U1 = Ud*2, (15)
Получим
dUвых = DUвых/2= Ud* Кd = Кn * Un. (16)
У ДК Кn достаточно велико, а Un мало. ДК в составе операционного усилителя(ОУ) способствует обеспечению его идеальности, т.е. практической реализации виртуального нуля
Un=U2 -U1 = 0 (15а)
между входами ОУ U2 иU1.
Несовершеноство простого реального ДК как причина развития техники сложных ДК.
Создание «идеального» ОУ связано с выполнением требований, относящихся к технике ДК и касающихся реализации:
1. идеального источника эмиттерного тока;
2. «бесконечно высокого» входного сопротивления;
3. «бесконечно высокого» усиления.
Очевидно, два последних требования взаимно противоречивы, поскольку диктуемый вторым требованием микромощный режим входного ДК связан с резким снижением его крутизны. Поэтому возникает проблема реализации
4. «предельно высоких» значений RL при условии идентичности нагрузок плец ДК.
Практическое воплощение простого ДК(рис 1б) не удовлетворяет вышеперечисленным требованиям 1-4.
Техника сложных ДК предусматривает применение электронных схем – эквивалентов, замещающих элементы рис 1б. Таковые эквиваленты реализуемы с помощью системы зеркал с различными показателями и питанием от одного источника тока.
Макромодели ДК.
Рис 2.Макромодели ДК: а) модель с двумя источниками входных чигналов и постоянной составляющей токов выходных плеч; б) малосигнальная модель проходжения дифференциального сигнала
Эти сигналы (U2 иU1) включены навстречу друг другу. Предположим, что U2 немного превыаетU1. Тогда через каждую из базовых цепей Т1 и Т2 (рис. 1б) потечет полный базовый ток Ibs, cостоящий из постоянной составляющей
Ibd = I0/2*(b+1) (17)
И малого переменного сигнала Ib. Таким образом,
Ibs = Ibs+Ib. (18)
Этот ток вызовет появление коллекторных токов левого плеча ДК
I02 = Ibd*b + Ib*B (19)
И правого плеча ДК
I01 = Ibd*b - Ib*B. (20)
В предположении b >>1 запишем для напряжения на выходе цепи рис. 2б:
Uвых = Е2 – (I0/2) * RL -Iвых1 *RL. (21)
Подстановка (17) в (20) и в (21) дает
Uвых = Е2 – (I0/2) * RL -I0*RL*b/2*(b+1) + Ib*B* RL. (21a)
Отсюда приращение млого выходного сигнала правого плеча ДК при изменении Ib составит:
dUвых = Ib*B* RL. (22)
Непосредственно из рис. 2а имеем:
Ib = (U2 -U1 )/2 * [Rgg + Re(B+1)] = Ud/Rвх. (23)
Где Rвх = Rt*(B+1). (23а)
Подставив (23) в (22) при B>>1 получим:
dUвых =Ud*RL/Rt; (24)
Kd = dUвых /Ud = RL/Rt= Sd * Rl, (25)
Где
Sd = 1/Rt . (26)
Параметры ДК.
Усилительные параметры.
Произведем бисекцию цепи рис 2б, отбросив входную цепь и заменив ее (рис 3) в соответствии с (22) эквивалентным генератором, работающим непосредственно на нагрузку RL.
Предполагая, что режим ДК микротоковый, т.е. справедливо допущение Rt » Re, из (25) и (26) получим:
Kd = RL/Rе= I0* RL/2*jт (27)