Министерство образования Российской Федерации
ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
СИСТЕМ УПРАВЛЕНИЯ РАДИОЭЛЕКТРОНИКИ (ТУСУР)
Кафедра радиоэлектроники и защиты информации (РЗИ)
ИМПУЛЬСНЫЙ УСИЛИТЕЛЬ
Пояснительная записка к курсовому проекту по дисциплине
Схемотехника и АЭУ
Студент гр. 180
__________Курманов Б.А.
______________
Руководитель
Доцент кафедры РЗИ
_____________Титов А.А.
_____________
2003
Реферат
Курсовая работа 29с., 12 рис., 3 табл., 2 источника.
УСИЛИТЕЛЬНЫЙ КАСКАД, ТРАНЗИСТОР, КОЭФФИЦИЕНТ ПЕРЕДАЧИ, ЧАСТОТНЫЕ ИСКАЖЕНИЯ, НАПРЯЖЕНИЕ, МОЩНОСТЬ, ТЕРМОСТАБИЛИЗАЦИЯ, СКВАЖНОСТЬ, КОРРЕКТИРУЮЩАЯ ЦЕПЬ, ОДНОНАПРАВЛЕННАЯ МОДЕЛЬ.
Целью данной работы является приобретение навыков аналитического расчёта усилителя по заданным требованиям.
В процессе работы производился расчёт параметров усилителя, анализ различных схем термостабилизации, были рассчитаны эквивалентные модели транзистора, рассмотрены варианты коллекторной цепи транзистора.
В результате работы получили принципиальную готовую схему усилителя с известной топологией и известными номиналами элементов.
Пояснительная записка выполнена в текстовом редакторе Microsoft Word 2002.
СОДЕРЖАНИЕ
1.Введение | 5 |
2.Предварительный расчет усилителя | 6 |
2.1 Расчет рабочей точки | 6 |
3. Выбор транзистора | 8 |
4. Расчет схемы термостабилизации | 9 |
4.1 Эмиттерная термостабилизация | 9 |
4.2 Пассивная коллекторная термостабилизация | 11 |
4.3 Активная коллекторная термостабилизация | 12 |
5. Расчёт параметров схемы Джиаколетто | 13 |
6. Расчет высокочастотной индуктивной коррекции | 15 |
7. Промежуточный каскад | 17 |
7.1 Расчет рабочей точки. Транзистор VT2 | 17 |
7.1.1 Расчет высокочастотной индуктивной коррекции | 20 |
7.1.2 Расчет схемы термостабилизации | 21 |
7.2 Транзистор VT1 | 22 |
7.2.1 Расчет схемы термостабилизации | 24 |
8. Искажения вносимые входной цепью | 25 |
9. Расчет Сф, Rф, Ср | 26 |
10. Заключение | 28 |
Литература | 29 |
Министерство образования Российской Федерации
Томский Университет Систем Управления и Радиоэлектроники (ТУСУР)
Кафедра радиоэлектроники и защиты информации (РЗИ)
Утверждаю
Зав. кафедрой РЗИ
_____В.И.Ильюшенко
ТЕХНИЧЕСКОЕ ЗАДАНИЕ № 2
на курсовое проектирование по дисциплине “Схемотехника АЭУ”
студенту гр.180 Курманову Б.А.
1. Тема проекта Импульсный усилитель
2. Сопротивление генератора Rг = 75 Ом.
3. Коэффициент усиления K = 25 дБ.
4. Длительность импульса 0,5 мкс.
5. Полярность "положительная".
6. Скважность 2.
7. Время установления 25 нс.
8. Выброс 5%.
9. Искажения плоской вершины импульса 5%.
10.Амплитуда 4В.
11.Полярность "отрицательная".
12.Сопротивление нагрузки Rн = 75 Ом.
13.Условия эксплуатации и требования к стабильности показателей усилителя 20 - 45 °С.
14.Срок сдачи проекта на кафедру РЗИ 10.05.2003.
15.Дата выдачи Задания 22.02.2003.
Руководитель проектирования _____________
Исполнитель ______________
1.Введение
Импульсные усилители нашли широкое применение. Особенно широко они применяются в радиотехнических устройства, в системах автоматики, в приборах экспериментальной физики, в измерительных приборах.
В зависимости от задач на импульсные усилители накладываются различные требования, которым они должны отвечать. Поэтому усилители могут различаться между собой как по элементной базе, особенностям схемы, так и по конструкции. Однако существует общая методика, которой следует придерживаться при проектировании усилителей.
Задачей представленного проекта является отыскание наиболее простого и надежного решения.
Для импульсного усилителя применяют специальные транзисторы, имеющие высокую граничную частоту. Такие транзисторы называются высокочастотными.
Итогом курсового проекта стали параметры и характеристики готового импульсного усилителя.
2.Предварительный расчет усилителя
2.1 Расчет рабочей точки
Исходные данные для курсового проектирования находятся в техническом задании.
Средне статистический транзистор даёт усиление в 20 дБ, по заданию у нас 25 дБ, отсюда получим, что наш усилитель будет иметь как минимум
2 каскада. Однако исходя из условия разной полярности входного и выходного сигнала число каскадов должно быть нечетным, следовательно число каскадов составит 3.Структурная схема многокаскадного усилителя представлена на рис.2.1
Рисунок 2.1 - Структурная схема усилителя
По заданному напряжению на выходе усилителя рассчитаем напряжение коллектор эмиттер и ток коллектора (рабочую точку).
Iко=
Uкэо=
Рассмотрим два варианта реализации схемы питания транзисторного усилителя: первая схема реостатный каскад, вторая схема дроссельный каскад.
Дроссельный каскад:
Схема дроссельного каскада по переменному току представлена на рисунке 2.2.
Рисунок 2.2 - Схема дроссельного каскада
Rн=75 (Ом).
Расчетные формулы:
(2.1) (2.2) (2.3) (2.4)Исходя из формул 2.1 - 2.4 вычислим напряжение Uкэо и ток Iко.
Eп = Uкэо = 4В
Pвых =
ВтPпотр =
Втη =
Резистивный каскад:
Схема резистивного каскада по переменному току представлена на рисунке 2.3.
Рисунок 2.3 - Схема резистивного каскада
Rк=75(Ом), Rн=75 (Ом), Rн~=37,5 (Ом).
Исходя из формул 2.1 - 2.4 вычислим напряжение Uкэо и ток Iко.
Eп = Iко*Rк+Uкэо = 8,4В
Pвых =
ВтPпотр =
Втη =
Результаты выбора рабочей точки двумя способами приведены в таблице 2.1.
Таблица 2.1.
Eп,(В) | Iко, (А) | Uко, (В) | Pвых.,(Вт) | Pпотр.,(Вт) | PRк,(Вт) | η | |
Rк | 8,4 | 0,0587 | 4 | 0,107 | 0,496 | 0,255 | 0,22 |
Lк | 4 | 0,0293 | 4 | 0,107 | 0,117 | 0,91 |
3. Выбор транзистора
Выбор транзистора осуществляется с учётом следующих предельных параметров:
1. PRк ≤ Pк доп*0,8
2. Iко ≤ 0,8*Iк max
3. fв(10-100) ≤ fт
4. Uкэо ≤ 0,8*Uкэ доп
Исходя из данных технического задания
. Тогда верхняя граничная частота оконечного каскада: (3.1)fТ>(10..100) fв,
fT=140МГц.
Этим требованиям полностью соответствует транзистор 2Т602А. Параметры транзистора приведены в таблице 3.1.
Таблица 3.1 - Параметры используемого транзистора
Наимено-вание | Обозначение | Значения |
Ск | Емкость коллекторного перехода | 4 пФ |
Сэ | Емкость эмиттерного перехода | 25 пФ |
Fт | Граничная частота транзистора | 150 МГц |
Βо | Статический коэффициент передачи тока в схеме с ОЭ | 20-80 |
Tо | Температура окружающей среды | 25оС |
Iкбо | Обратный ток коллектор-база | 10 мкА |
Iк | Постоянный ток коллектора | 75 мА |
Тперmax | Температура перехода | 423 К |
Pрас | Постоянная рассеиваемая мощность (без теплоотвода) | 0,85 Вт |
Далее рассчитаем выберем схему термостабилизации.
4. Расчет схемы термостабилизации
4.1 Эмиттерная термостабилизация
Эмиттерная стабилизация применяется в основном в маломощных каскадах, и получила наиболее широкое распространение. Схема эмиттерной термостабилизации приведена на рисунке 4.1.
Рисунок 4.1 - Схема эмиттерной термостабилизации
Расчёт произведем поэтапно:
1. Выберем напряжение эмиттера
, ток делителя и напряжение питания ;